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Spin textures with various topological orders are of great theoretical and practical interest. Hopfion, a
spin texture characterized by a three-dimensional topological order was recently realized in electronic spin
systems. Here, we show that monochromatic light can be structured such that its photonic spin exhibits a
hopfion texture in the three-dimensional real space. We also provide ways to construct spin textures of
arbitrary Hopf charges. When extending the system to four dimensions by introducing a parameter
dimension, a new type of topological defect in the form of a monopole loop in photonic spin is encountered.
Each point on the loop is a topological spin defect in three dimensions, and the loop itself carries quantized
Hopf charges. Such photonic spin texture and defect may find application in control and sensing of
nanoparticles, and optical generation of topological texture in motions of particles or fluids.
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Topological textures refer to topologically nontrivial
distributions of a physical field on a geometric space [1].
A prominent example of a topological texture is the
skyrmion, which describes a topologically nontrivial dis-
tribution of a physical field that can be described by a unit
3-vector, i.e., a unit vector in three-dimensional space, on a
spherical surface (S2) [2,3]. Mathematically, the skyrmion
is characterized by the homotopy class of the maps from S2

to S2, as denoted by π2ðS2Þ [1,2]. As another example, a
hopfion describes a topologically nontrivial distribution of
unit 3-vectors on a three-dimensional spherical hypersur-
face (S3), and is characterized by π3ðS2Þ, i.e., the homotopy
class of the maps from S3 to S2 [4–7]. The presence of
topological texture is intimately related to the existence of
topological defects [1]. For example, a skyrmion texture on
a spherical surface implies the existence of a topological
defect inside the spherical surface where the physical field
vanishes [8,9].
The study of topological textures and topological defects

plays a prominent role in diverse physics areas, including
high-energy [10–12], condensed matter [7,13–16], and
atomic physics [17]. In particular, the topological textures
and topological defects for electronic spins in condensed
matter systems have been extensively studied in recent
years. Both skyrmions and hopfions have been observed for
electronic spins [15,18,19]. These topological spin textures
are of fundamental interest since they represent a topo-
logically nontrivial elementary excitation, and they are also
of practical interest since they may provide a carrier of
information that is robust to perturbations [20,21].
Inspired by the development in condensed matter

physics, there have been emerging interests in exploring

similar topological textures and defects in photonic
systems, with potential applications in sensing and imaging
[9,22–27,29–37]. Similar to electrons, photons also have
spin angular momentum. Skyrmion and its associated
topological spin defect have been studied in photonic spin
distributions [9,23–28]. There has not been, however, any
work on hopfion texture in photonic spin. Moreover, the
topological defect associated with the hopfion texture has
not been discussed previously in either electronic or pho-
tonic systems.
In this Letter, we show that monochromatic electromag-

netic wave in real three-dimensional space can be struc-
tured such that its photonic spin distribution forms a
hopfion texture [Fig. 1(b)]. The topological property of
the hopfion texture is manifested in the integer-valued Hopf
invariant [38], referred as the Hopf charge in the following.
We demonstrate the possibility of constructing photonic
spin texture with arbitrary Hopf charge. When a certain
parameter is included as a fourth dimension, one may
encounter a Hopf defect. Passing through the defect
changes the Hopf charge of the photonic spin texture by
one. We note that hopfion texture has recently been
demonstrated in photonics. However, these works consid-
ered polarization [36,37] or scalar phase [39] that is
different from the spin angular momentum considered
here.
The monochromatic electromagnetic field in real 3D

space has a spin angular momentum density vector, defined
as [23,27,40–47]

S ¼ 1

4ω
½ϵ0ImðE� ×EÞ þ μ0ImðH� ×HÞ�; ð1Þ
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where E and H, respectively, are complex vectors of
electric field and magnetic field, ϵ0 and μ0, respectively,
are the vacuum permittivity and permeability, and ω is the
angular frequency of the light. Using the spin density
vector, one can define a normalized spin vector n ¼ S=jSj
that takes value on the unit sphere S2.
A hopfion texture of photonic spin can be constructed as

follows. We consider a monochromatic beam propagating
in theþz direction. The transverse (x, y) components of the
electric field can be written as

Et ¼ u1eikzðex − ieyÞ þ u2eikzðex þ ieyÞ
¼ ðu1e−iθ þ u2eiθÞeikzer þ ð−iu1e−iθ þ iu2eiθÞeikzeθ;

ð2Þ

where u1 and u2 are the slowly varying envelope function
of right-circular polarization (RCP) and left-circular polari-
zation (LCP) components, respectively. k ¼ 2π=λ is the
wave vector. λ is the wavelength. ex;y;r;θ are unit vectors
along the respective coordinate axis. r and θ are cylindrical
coordinates defined as r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, θ ¼ arctanðy=xÞ.

The transverse components of the magnetic field are

Ht¼
1

Z0

½ðiu1e−iθ− iu2eiθÞeikzerþðu1e−iθþu2eiθÞeikzeθ�:

ð3Þ

Z0 is the vacuum impedance. The field in the longitudinal
(z) direction is obtained by satisfying Gauss’s law
∇ ·E ¼ 0 and ∇ ·H ¼ 0 to first order [48,49]:

Ez ¼
i
kr

�
∂ðrErÞ
∂r

þ ∂Eθ

∂θ

�

Hz ¼
i
kr

�
∂ðrHrÞ
∂r

þ ∂Hθ

∂θ

�
ð4Þ

We first analyze a simple example that lead to a hopfion
texture. As we will explain below, various general consid-
erations for creating and engineering such spin texture can
be seen from this simple example. We choose

u1 ¼ −0.7þ 4.5ug

u2 ¼ 1.5ug ð5Þ

where ug is the Gaussian beam envelope, given by

ugðr; θ; zÞ ¼ −i
ffiffiffiffiffiffiffi
2zR
λ

r
1

z − izR
exp

�
ikr2

2ðz − izRÞ
�
: ð6Þ

zR is the Rayleigh range of the beam, taken to be 20λ
throughout this Letter. The constant −0.7 in u1 represents a
plane-wave component. Such beam configuration is sche-
matically shown in Fig. 1(a), where we superpose the LCP
and RCP component with the same Gaussian profile and
represent the beam as elliptically polarized.
The spin texture from such beam configuration is plotted

in Fig. 1(b). As we will show below, the spin texture is
rotationally symmetric around the z axis. For points on the
z axis or sufficiently far away from the origin, the spin
density points to the−z direction. The former is because the
z component of the fields is zero on axis, and the latter is
because ug → 0 sufficiently far from the origin. In the semi-
infinite plane of constant θ (referred to as the rz plane in the
following), there is a point r ¼ r0, z ¼ 0 where the spin

FIG. 1. Photonic spin hopfion and its creation. (a) Schematic of the structured beam described by Eq. (5). All beams propagates in the
þz direction. The Gaussian beam (dark lines) is a superposition of the LCP and RCP components. The plane wave (gray dashed lines)
has right-circular polarization. (b) The distribution of normalized spin vector n in 3D real space for the beam configuration in (a). The
orientation of the vector is color coded according to the inset on the top right. For better visual clarity, the vector here is obtained from the
original vector by dividing Sz by 3 and rescaling such vector to unit length. (c) Lines in real space on which the spin orientation is
constant. The spin orientations and its color are (1,0,0), cyan; (0,1,0), purple; ð0;−1; 0Þ, green; and ð−1; 0; 0Þ, red.
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points to theþz direction [white arrow in Fig. 1(b)]. In a 2D
region on the rz plane around such point, the spin forms a
skyrmion texture. Such point is referred to as the center of
the skyrmion below. As θ vary from 0 to 2π, the skyrmion
texture “co-rotates” with θ, producing a rotationally invari-
ant 3D texture, known as a twisted skyrmion loop [50].
One can also trace the position of a given spin orientation
in space [Fig. 1(c)]. Their trajectories form a pairwise
linked loop, where the linking number equals the Hopf
charge [38,51]. Such linking behavior and the twisted
skyrmion loop are signatures of a hopfion texture [15,51].
The spin texture here is defined in 3D real space. Since

the plane-wave component ensures the spin vector suffi-
ciently far away from the origin approaches the same
vector, the 3D real space can be compactified into a
3-sphere S3. The hopfion texture can then be classified
by the homotopy group π3ðS2Þ ¼ Z, describing topologi-
cally distinct classes of maps from S3 to S2 [1,4,7,14,52].
The Hopf charge, being the topological invariant of this
map, is given by [36,38,53]

Q ¼
Z
V
A ·Bd3x ð7Þ

Here, B is known as the emergent magnetic field, or skyr-
mion density, defined as Bi ¼ ð1=8πÞϵijkn · ð∂jn × ∂knÞ,
where i, j, k denote real space indices [2,9], and A is
the ’vector potential’ ofB satisfying ∇ ×A ¼ B. Duplicate
indices indicate summation. The integration domain V is
the whole 3D space. We note that such expression of Hopf
charge has a similar form with the optical helicity [54] or
the magnetic helicity [52], although the physical context is
completely different.
To understand the construction of such spin texture, we

plot the amplitude and phase of the function u1 in Figs. 2(a)
and 2(b), respectively. We see that near r=w0 ≈ 1 and z ¼ 0,
the amplitude of u1 goes to zero and its phase shows a
vortex around such zero. In contrast, u2, being a Gaussian
envelope, does not have any zeros or phase singularities.
The location of the vortex therefore approximately deter-
mines the center of the skyrmion texture in the rz plane.
This relation between the phase vortex and the skyrmion
texture in the rz plane underlies our construction of a
hopfion texture in this example.
Building upon the understanding of the specific example

of Eq. (5), we next discuss the general criterion for the
choice of u1 and u2 in Eq. (2) that leads to a Hopfion
texture. We calculate the spin distribution of a field given
by Eqs. (2)–(4), using Eq. (1):

Sr ¼
ϵ0
kω

ðImf1 þ Imf2Þ

Sθ ¼
ϵ0
kω

ðRef1 − Ref2Þ

Sz ¼
ϵ0
kω

ðju2j2 − ju1j2Þ; ð8Þ

where

f1 ¼ u�1

�
−
∂u1
∂r

þ i
r
∂u1
∂θ

�

f2 ¼ u�2

�
∂u2
∂r

þ i
r
∂u2
∂θ

�
: ð9Þ

In our general construction criteria, we choose u1 to be a
superposition of Laguerre Gaussian modes [55,56] with
azimuthal index m1 ¼ 0 and a plane-wave component. We
choose u2 to be a superposition of Laguerre Gaussian
modes with the same azimuthal index m2. If we choose
m2 ¼ 0, a small plane-wave component that is smaller than
the plane-wave component for u1 may be included in the
superposition. We see that Eq. (5) fits into our general
choice here. Under this general choice of u1 and u2, the
spin component Sr, Sθ, Sz does not explicitly depend on θ,
since in Eq. (9), all exp ðimθÞ dependency is cancelled.
Therefore, such spin texture is rotationally invariant. If we
choose the envelope function u2 to be small enough, for
most of the spatial locations including infinity, ju1j > ju2j
and therefore Sz < 0 [gray region in Fig. 2(c)]. In general,
u2 is nonzero around the zero of u1. Therefore, around each
zero of u1 we have a finite region where Sz > 0 [white
region in Fig. 2(c)]. Each region contains only one zero of
u1 if we choose a sufficiently small u2. If u2 is also
sufficiently slow-varying, we have jf2j ≪ jf1j. Note that if
u2 represents a plane wave, f2 ¼ 0. When f2 is negligibly

FIG. 2. General rules for constructing a photonic spin hopfion.
The amplitude (a) and the phase (b) of the envelope function u1 in
Eq. (5). (c) The region where Sz > 0 (white) and Sz ≤ 0 (gray).
Circle represents the phase singularity point of f1. Solid dot
represents the point where Sr ¼ Sθ ¼ 0. The spin is purely in þz
direction. (d) Emergent magnetic field in the rz plane. Br and Bz
components are shown in purple arrows, and Bθ component is
shown in color plot. Negative Bθ components points from the
paper towards the reader.
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small, Sr and Sθ are approximately the imaginary and real
part of a complex function f1, which equals to zero when
u1 ¼ 0. At these points, we have the spin inversion (i.e.,
spin being completely in the þz direction). Around such
zeros of f1, the phase vortex leads to a winding in the Sr
and Sθ component. Such winding and the spin inversion
point lead to a skyrmion texture in the rz plane.
Although ideally we require u2 to be sufficiently small

and slow-varying, in practice, we found that u2 being a
fraction of the amplitude of u1 [see Eq. (5)] suffices to
create a skyrmion texture in the rz plane and therefore a
hopfion texture in 3D space. In Fig. 2(c), we use “o” to
represent the zero of f1, and use solid dot to represent the
point where Sr ¼ Sθ ¼ 0. The two points are close in
position. In fact, one can view f2 as a small perturbation
added onto f1 that will not destroy the phase singularity,
but only shifts it slightly. As long as the perturbation is
small such that the solid dot stays in the region where
Sz > 0 (white region), the skyrmion texture in the rz plane
and hence the hopfion texture in 3D remains.
We numerically calculate the Hopf charge of photonic

spin texture [Fig. 1(b)] for the beam configuration given by
Eq. (5). We first calculate the emergent magnetic field B
and then solve for the A under the gauge choice ∇ ·A ¼ 0.
Such calculation can be done conveniently in the spatial
frequency domain [16]. Numerically integrating Eq. (7)
indicates a Hopf charge of þ1. This is consistent with the
fact that the field lines of B, which is also the line of
constant spin orientation in Fig. 1(c), have a positive (right-
handed) helicity when going along the θ direction. This
indicates a positive Hopf charge [57]. Any two of the field
lines also has a linking number 1. Therefore, such con-
figuration has a Hopf charge þ1.
Because of the correspondence between the phase

vortices of u1 and the skyrmion texture of photonic spin
in the rz plane, one can in fact create photonic spin textures
of arbitrary Hopf charge by engineering the phase vortices
of u1. We provide such a construction and examples in the
Supplemental Material [53].
We now proceed to demonstrate the topological defect

that is closely related to such topological texture, known as
the Hopf defect [11,58]. Hopf defect appears in four
dimensions. Pointlike Hopf defects are usually unstable
against perturbations. As a result of perturbations, it
deforms into a ring, known as the monopole loop [11,58].
Each point on the loop is a monopolelike defect in a three
dimensional space that does not include the tangential
direction of the loop. When the monopole points form loop
in four dimensions, the entire loop can be regarded as a
Hopf defect and carries integer Hopf charges. We illustrate
the formation of monopole loops in the Supplemental
Material [53]. An analogous phenomenon known as
disclination ring that occurs in 3D space was found in
liquid crystals [59] and systems with non-Hermitian
Hamiltonians [60].

One can realize the monopole loop in photonic spin
density distribution by introducing a parameter dimension
to be the fourth dimension. As an example, we introduce a
parameter w by modifying Eq. (5) as

u1 ¼ −0.7þ wug

u2 ¼ 1.5ug: ð10Þ

When w ¼ 4.5, this is the previously studied case where the
spin exhibits a charge 1 hopfion texture [upper plane in
Fig. 3(a)]. When decreasing w to 3.71, a pair of monopole-
like singularities start to appear on the z axis [Fig. 3(a)]. For
such singularities, the spin vanishes at a specific point in 3D
real space. And on a spherical surface around that point the
spin has a skyrmion texture. Such singularities are known
as topological spin defect, and are classified by the skyr-
mion number of that texture [9]. The skyrmion number is
−1 for the blue dot and þ1 for the red dot. This is further
illustrated in Fig. 3(b). The lines of constant spin, which are
also the emergent magnetic field lines, form a dipolelike
structure. Further decreasing w to 0.71, two spin defect
points annihilate each other. Therefore, the defects form a
loop in 4D space. At w ¼ 0.5 < 0.71, the Hopf charge of
the spin texture in 3D real space is zero [lower plane in
Fig. 3(a)]. Comparing this case with the case where
w ¼ 4.5, we see that the monopole spin defect loop carries
unity Hopf charge and is therefore topologically equivalent
to a Hopf defect. For spin texture with higher Hopf charge,
passing through a monopole loop also changes the Hopf
charge by unity [53]. To the authors’ knowledge, such
monopole loop was not previously discussed in the spin
texture of any system.
Our work shows that photons can exhibit a hopfion spin

texture. These results certainly have connections to hopfion
spin texture for electrons. But photons and electrons are

FIG. 3. Photonic spin defect in 3D and 4D spaces. (a) Schematic
of the loop that consists of points of photonic spin defect (gray) in
4D space ðx; y; z; wÞ. The upper plane at w ¼ 4.5 has photonic
spin texture in xyz space with Hopf chargeþ1. The lower plane at
w ¼ 0.5 has photonic spin texture in xyz space with Hopf charge
0. Red and blue dots represent two representative points on the
monopole loop (w ¼ 3.0), and have skyrmion numbers þ1 and
−1, respectively. (b) The same pair of defect points in xyz space.
w ¼ 3.0. The spin orientation is constant along each colored line,
with the color scheme the same as Fig. 1(c).
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different fundamental particles, and their spin properties
have different physical manifestations. The Stokes vector, a
real vector calculated from the local polarization state of
light (often known as pseudospin) was also shown recently
to form hopfion textures [36,37]. However, we point out
that the spin density and the Stokes vector are different
quantities and there is no straightforward relation between
the polarization Hopf charge and the spin Hopf charge. In
fact, the spin hopfion texture presented above has a zero
Hopf charge in its Stokes vector. We provide more
discussion in the Supplemental Material [53].
We envision that such spin texture can be experi-

mentally measured by analyzing the scattering from a
probe particle [49]. Considering the mechanical effect,
the spin density gives rise to a torque to such particles
inside the electromagnetic field [9,42,61]. Given that the
cross section of a spin hopfion contains skyrmions, the
torque on the particle may be oriented along arbitrary
direction by changing the relative position between the
beam and the particle. It is also conceivable to collectively
rotate many particles to imprint the hopfion texture onto
their rotation axes, therefore potentially creating topo-
logical textures in the vorticity of a fluid flow [62].
Spin density occurs in many other types of waves,

including electron waves [63], acoustic waves [64], and
surface gravity waves [65]. Besides spin, there may be
other quantities of field, such as the linear momentum or the
orbital angular momentum, that contribute to wave-matter
interaction [43,66]. This work points to the potential in
engineering topological textures in spin density and possi-
bly other quantities of various waves.
In summary, we point out that the spin density of

monochromatic light can form hopfion textures. The
hopfion texture, which can be viewed as a twisted skyrmion
loop, can be created by engineering the vortices in one of
the envelope functions of the beam. We provide examples
to construct photonic spin hopfion texture of unity and
higher Hopf charges. By introducing a parameter dimen-
sion, we encounter monopole loops as the topological
defect that separates photonic spin texture of different Hopf
charges. Such topological defects and textures may allow
new ways of controlling nanoparticles, may be used to
generate topological texture in the motion of particles or the
flow of fluids, and point to the possibility of engineering
topological textures in other types of waves.
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