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We present the first exact theory and analytical formulas for the large-scale phase fluctuations in the sine-
Gordon model, valid in all regimes of the field theory, for arbitrary temperatures and interaction strengths.
Our result is based on the ballistic fluctuation theory combined with generalized hydrodynamics, and can
be seen as an exact “dressing” of the phenomenological soliton-gas picture first introduced by Sachdev and
Young [Phys. Rev. Lett. 78, 2220 (1997)], to the modes of generalized hydrodynamics. The resulting
physics of phase fluctuations in the sine-Gordon model is qualitatively different, as the stable quasiparticles
of integrability give coherent ballistic propagation instead of diffusive spreading. We provide extensive
numerical checks of our analytical predictions within the classical regime of the field theory by using
Monte Carlo methods. We discuss how our results are of ready applicability to experiments on tunnel-
coupled quasicondensates.
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Introduction.—Understanding correlations and fluctua-
tions in quantum and classical interacting many-body
systems is a crucial problem of theoretical physics.
Needless to say, in strongly interacting models this is a
daunting task, too complicated to be carried out in the most
general setting. However, at large scales universality
emerges [1–5]: microscopic details are unimportant and
information is carried only by slowly decaying modes,
coupled to the local conservation laws of the underlying
Hamiltonian. This is the hallmark of hydrodynamics.
The most significant correlations of a given observable

are due to its coupling with hydrodynamic modes (sound,
heat, etc.) associated with conservation laws [6]. Along the
velocities of such modes, power-law behavior is observed
instead of exponential decay. But some observables do not
couple to hydrodynamic modes, such as those sensitive to
topological excitations, because of the intrinsically non-
local nature of the latter. For instance, correlation functions
of order parameters often show exponential decay through-
out space-time. Is there a general theory for understanding
such behavior? How do hydrodynamic modes interact with
order parameters and what information can be extracted
from their correlation functions? Even with the mathemati-
cal tools of integrability, computing correlations of order
parameters from a microscopic analysis is challenging in
noninteracting cases [7–17] and unpractical in the presence
of interactions [18–21]. This calls for a more universal
hydrodynamic approach. The relation between order

parameters and hydrodynamic modes was recently
addressed [22,23] in the XX quantum chain using free-
fermionic techniques; and a general, but phenomenologi-
cal, picture for the influence of topological excitations on
correlations was proposed by Sachdev and Young (SY)
[24]. However, to our knowledge, there are no results
beyond free excitations or extremely dilute gases.
A paradigmatic model where these questions are of

central relevance is the sine-Gordon model

H ¼
Z

dx

�
c2g2

2
Π2 þ 1

2g2
ð∂xϕÞ2 −

c2m2

g2
cosðϕÞ

�
; ð1Þ

that manifests itself in the most diverse contexts [3,25–29].
Above, the field ΠðxÞ is conjugated to the phase ϕðxÞ, g
tunes the interactions, c is the “velocity of light,” andm is a
mass scale. In the following, we measure lengths in units of
½mc�−1. The low-energy sector of many systems is well
described by the sine-Gordon model, as perturbations can
induce Berezinskii-Kosterlitz-Thouless transitions in the
ubiquitous Luttinger liquid [3] (m ¼ 0) field theory, but it
has many applications in high-energy physics as well [30].
Notably, the sine-Gordon model is a paradigmatic example
of integrable field theory [31], hence it is amenable to
nonperturbative analysis, and shows peculiar thermaliza-
tion [32] and transport [33,34] properties. In this model,
fluctuations create topological excitations of the phase field
ϕ: phase-slips of 2π interpolating between the degenerate
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ground states ϕ∈ 2πZ. The nonlocality of these excitations
with respect to the model’s order parameter ϕ places it in
the general category we outlined, leading us to the central
question of this Letter: can we build a general framework
able to capture the large scale fluctuations of the
phase field?.
In addition to being a long-standing unsolved problem of

mathematical physics, this question is of central exper-
imental relevance. Correlation functions of vertex operators
eiλϕ capture response functions at low energy in certain
materials [35–38] and in multispecies cold atomic gases
[3], and order-parameter correlations functions in spin
chains [29,39]. Moreover, recent experimental advances
probe fluctuations of phase differences Δϕðt; xÞ ¼
ϕðt; xÞ − ϕð0; 0Þ themselves. This is possible in tabletop
quantum simulators of the sine-Gordon model realized by
tunnel-coupled condensates [40,41]. Matter-wave interfer-
ometry gives access to projective measurements of phase
differences in both equilibrium [42,43] and nonequilibrium
settings [44]: any analytical insight would be of utmost
interest not only from a theoretical point of view, but also in
very concrete experiments. In this Letter, we solve this
problem.
We show that the probability distribution of the phase

differences, Pf½Δϕðt; xÞ=2π� ¼ δg, obeys a large deviation
principle P½δ� ≍ e−lIαðδÞ, where l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ c2t2

p
and the

large-deviation function (LDF) Iα is fully determined by
hydrodynamic modes and depends only on the “ray”
x=ðctÞ ¼ tan α. Our theory fully corrects the SY picture
[45–49] by accounting for quantum distributions and
coherence, and gives qualitatively different, analytical,
and exact results that are valid in the scaling limit of large
l, and are applicable at arbitrary interactions, finite temper-
ature and even on generalized Gibbs ensembles [32].
The sine-Gordon field theory.—The sine-Gordon model

is integrable both in the classical [50] and quantum [51]
regimes. The fundamental excitations are relativistic topo-
logical solitons interpolating between the valleys of the
periodic potential and parametrized by their rapidity θ.
Hereafter, we refer to “kinks” (“antikinks”) when they
cause a positive (negative) phase slipþ2π from left to right.
A kink-antikink pair can form a stable bound state called
breather [50,51]. In the quantum case, breathers are absent
in the repulsive regime cg2 > 4π; for smaller interactions,
breathers appear in the spectrum, with masses mn ¼
2M sin½ðπ=2Þξn� for integers n < ξ−1 ¼ ½ð8πÞ=ðcg2Þ� − 1.
The classical soliton mass M ¼ 8m=ðcg2Þ is renormalized
upon quantization [52]. At weak interactions g → 0, the
breather masses collapse to a continuum, and classical
physics is recovered [53].
The Hilbert space is described in terms of the asymptotic

scattering states of these stable excitations. In integrable
models, the interactions are fully encoded within the two-
body scattering matrix [31]. For example, twowave packets
of colliding breathers are transmitted through each other,

experiencing in the meanwhile a nontrivial displacement
(see e.g., [54]) akin to classical soliton gases [55]. Kink-
kink and breather-kink scattering behaves similarly, but
reflection is generally possible in kink-antikink scattering
(except for the reflectionless points ξ−1 ∈N). The task of
diagonalizing this quantum process in terms of appropriate
coherent combinations of scattering states, is accomplished
by the thermodynamic Bethe ansatz (TBA) [56–61] and
generalized hydrodynamics (GHD) [34,62–64], worked out
in the sine-Gordon model in [48,65]. We summarize some
aspects in the Supplemental Material (SM) [66].
In the SY phenomenological approach applied to sine-

Gordon [45–49], phase fluctuations are assumed to come
solely from a dilute gas of (anti)kinks with Maxwell-
Boltzmann statistics, justified at low temperatures.
Whenever the trajectory of an (anti)kink intersects the
ray connecting ðt; xÞ with the origin, it causes the phase
difference ϕðt; xÞ − ϕð0; 0Þ to jump, see Fig. 1: hence, the
statistics of phase differences is intimately connected with
that of traveling solitons. Damle and Sachdev [45] con-
sidered the repulsive regime, where only (anti)kinks are
present, and assumed a fully reflective scattering, as
justified by the universal low-energy limit of the scattering
matrix, leading to a diffusive behavior of the vertex
operator correlation function in space-time [45]. At finite
temperature, transmission is possible, but a hybrid semi-
classical picture of incoherent processes with finite trans-
mission probability is still diffusive as reflection eventually
dominates. We find that these conclusions do not hold in
the sine-Gordon theory, where integrability plays a pivotal
role in preserving coherent scattering, giving rise to
ballistic transport at all temperatures and coupling
strengths and exponential decay of correlation functions
everywhere in space-time.
Large scale correlation functions and full counting

statistics.—The topological charge is defined as Qtop ¼R
dxqtopðxÞ, where qtop ¼ ð1=2πÞ∂xϕ is its density. It is an

FIG. 1. Phenomenology of phase fluctuations and topological
solitons. Pictorial representation of the phase fluctuation induced
by a traveling soliton, moving with a velocity veff. Whenever the
(anti)kink worldline intersects the segment connecting ðt; xÞ with
the origin, the phase difference jumps �2π. Ballistic fluctuation
theory exactly captures coherence that causes ballistic fluctua-
tions and exponential decay of vertex operator correlations,
neglected by the SY phenomenological approach which instead
gives diffusion around the space-time ray at x ¼ 0.
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extensive conserved quantity: since the cosine-potential
does not confine the field, ϕðxÞ − ϕð0Þ can grow indefini-
tely. The associated continuity equation is ∂tqtop þ ∂xjtop ¼
0, with the current jtop ¼ −ð1=2πÞ∂tϕ. Integrating qtopðxÞ
on a finite interval, we recover the difference of phases at
the interval’s endpoints. The ballistic fluctuation theorey
(BFT) provides general formulas for the full counting
statistics (FCS) of total charges and currents on large
intervals of space-time solely from hydrodynamic data
[67,68]. For a generic density qðx; tÞ and current jðx; tÞ,
and a thermal or Generalized Gibbs Ensemble (GGE) [32]
h� � �i, the theory predicts that for ðx; ctÞ ¼ ðl sin α;l cos αÞ
and large l one has

heλ
R

1

0
ds½ṫsjðxs;tsÞ−ẋsqðxs;tsÞ�i ≍ elFαðλÞ; ð2Þ

where s ↦ ðxs; tsÞ is a path in space-time from ðx0; t0Þ ¼
ð0; 0Þ to ðx1; t1Þ ¼ ðx; tÞ. The FCS FαðλÞ, a “dynamical
specific free energy,” is the main result of the BFT. It is
expressed in terms of the current jλ ¼ hjiλ and density

qλ ¼ hqiλ evaluated in a λ-dependent GGE h� � �iλ as

FαðλÞ ¼
Z

λ

0

dλ0ðc−1jλ0 cos α − qλ0 sin αÞ: ð3Þ

The λ-dependent GGE is fixed by a flow equation from
h� � �i at λ ¼ 0, that describes the deformation of the state by
the exponential operator on the left-hand side of Eq. (2).
Taking Q ¼ Qtop we have

R
1
0 ds½ṫsjtopðxs; tsÞ−

ẋsqtopðxs; tsÞ� ¼ −f½Δϕðx; tÞ�=2πg, thus the left-hand side
of Eq. (2) is

R
dδPf½Δϕðt; xÞ=2π� ¼ δge−λδ. The theory

predicts that all cumulants Cn ¼ h½ðΔϕÞ=ð2πÞ�nic of phase
differences scale extensively Cn ∼ lcn as l → ∞, with
FαðλÞ ¼

P∞
n¼1 cnð−λÞn=n! the Legendre-Fenchel trans-

form of IαðδÞ. In the SM [66] we review the BFT and
apply it to the topological charge of the sine-Gordon model.
Remarkably simple is the closed expression, valid at
reflectionless points and in the classical regime, for the
second cumulant whenever the average topological charge
is zero,

c2ðαÞ ¼ 2

Z
dθρKðθÞfðθÞjc−1veffK ðθÞ cos α − sin αj: ð4Þ

Here kinks and antikinks have the same GGE distribution
ρKðθÞ and (dressed) velocity veffK ðθÞ, and fðθÞ is a state
dependent statistical factor (f → 1 in the semiclassical
limit). In practice, c2ðαÞ is the scaled variance for the
number of solitons whose wordline intersects the segment
connecting ðt; xÞ and the origin, see Fig. 1. All the terms in
Eq. (4) are exactly known from TBA and GHD. The full
second c2 and fourth c4 cumulants are reported in the SM

FIG. 2. Equal-time probability and cumulants. We compare
analytic predictions (BFT) (black line) in the classical regime of
sine-Gordon with numerical results from transfer matrix (blue
line and symbols), and with predictions from the SY picture of a
gas of (anti)kinks with Maxwell-Boltzmann statistics (red line),
in order to illustrate the neglected dressing effects in this picture,
in the chosen regime of parameters. The bare mass m is tuned
while keeping β ¼ g ¼ c ¼ 1. (a) The probability of phase
differences is reported for a typical mass scale and distance,
showing the convergence to the scaling behavior. (b),(c) The
convergence of cumulants upon increasing the relative distance is
shown. (d)–(f) We scan different values of the bare mass: the
vertex operator (d) helps to identify the strongly interacting
regimes away from the massless limit hcosϕi ≃ 1 and the large-
mass noninteracting regime 1 − hcosϕi ≃ ð4mÞ−1 [53]. (e),(f)
The large-distance scaling of the second and fourth cumulants is
shown, clearly non-Gaussian and in perfect agreement with
numerics.

FIG. 3. Cumulants with space-time separation. Scaling behav-
ior of the second (a.1) and fourth (b.1) cumulant as function of the
ray x=ðctÞ ¼ tan α for representative choices of the mass scale m
(β ¼ g ¼ c ¼ 1) in the classical regime. Numerical values
obtained with Monte Carlo (symbols) closely follow the analytic
BFT prediction (solid lines). (a.2), (b.2) Approach of the quantum
prediction (dashed lines) to the classical limit (solid line) for the
c2 and c4, respectively. We take m ¼ 0.25 and increase the
number of breathers N, while tuning the quantum soliton mass
according to the semiclassical limit [53,66].
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[66] at the reflectionless points and classical regime, and
can be obtained for arbitrary coupling from the sine-
Gordon TBA [48,65].
The BFT results should be contrasted with the SY picture

[45–49]. Clearly, the latter picture neglects dressing effects
by setting ρKðθÞ¼½ðMccoshθÞ=ð2πÞ�expð−βMc2coshθÞ
in (4) [see Fig. 2(a)]. But most importantly, at unequal
times, the resulting physics is qualitatively different: fully
reflective scattering makes the topological charge an iso-
lated hydrodynamic mode with zero velocity, and indeed
Ref. [45] predicts a diffusive, instead of ballistic, behavior,
with power-law instead of exponential decay of vertex
operator correlations at α ¼ 0. The BFT captures the
resulting coherent scattering and shows that a ballistic
behavior and exponential decay is generic in the sine-
Gordon model. Note that taking purely transmissive scatter-
ing in the SY picture [45], one obtains the correct ballistic
low-temperature behavior at reflectionless points [66].
The semiclassical limit and numerical benchmarks.—

Strongly interacting systems at finite temperature are
extremely challenging to simulate [69]. Hence, we now
focus on the classical regime, which is amenable to efficient
numerical benchmarks [66].
The exact thermodynamics of the classical sine-Gordon

model has recently been developed in Ref. [53] building on
classical limits [70–74] of quantum integrability; we apply
these to the BFT framework [66]. In equilibrium, one can
set interaction, temperature, and velocity to 1 upon a length
scale renormalization: we opt for this choice and use the
mass m as a tunable parameter. In Fig. 2, we compare
equal-time phase fluctuations derived from (i) our result,
(ii) SY classical picture (see the SM [66]), and (iii) numeri-
cal results obtained with the transfer matrix method
[66,75,76]. In Fig. 2(a) we show the full distribution of
the phase for a typical example. Notably, numerics shows
“spikes,” reminiscent of the fact that the number of solitons
comprised in an interval ½0; x� is an integer number; for
lower temperature (larger mass scales) the spikes are more
peaked. The BFT prediction, substantially different from
SY, captures the smoothed probability distribution: con-
vergence at large separation holds in a weak sense. The
BFT scaling is clearer for the cumulants, see Figs. 2(b) and
2(c); it becomes slower for higher cumulants. In Figs. 2(d)–
2(f), we scan a wide parametric regime finding excellent
agreement between our analytical result and numerics. In
Fig. 3, we analyze unequal-times phase fluctuations: we
observed spikes (not shown), but the cumulants quickly
reach their asymptotic scaling. For representative values of
the mass, we compare the ray-dependent growth of
cumulants predicted by BFT against Monte Carlo simu-
lation [77,78] with good agreement, and show the con-
vergence of quantum predictions at the reflectionless points
to the semiclassical ones. Further analysis is left to the
SM [66].
Experimental feasibility.—A versatile tabletop simulator

of the sine-Gordon model is realized by the experimental

group in Vienna via two tunnel-coupled quasicondensates
[40], see Fig. 4(a); phase fluctuations are probed by matter-
wave interferometry measurements [79–81]. Our result can
arguably give quantitative predictions for such experimen-
tal data and may be useful in state characterization, both in
equilibrium [42] and nonequilibrium setups [82]. However,
imperfections and finite resolution may undermine a
correct phase measurement: to show that faithful phase
tomography is within the reach of current experimental
capability, we analyze a toy model of the measurement
process. Because of the weak interactions of the atoms,
sine-Gordon is realized close to its semiclassical regime
[83,84] and Monte Carlo accounts for experimental obser-
vations [42,85]. We use typical experimental parameters,
see the SM [66]. Atoms are trapped in a smoothed box
potential of length ∼160 μm, and the transverse trap
frequency [86] tunes interactions. The inhomogeneous
density profile nðxÞ is well described by the Thomas-
Fermi approximation and causes weak inhomogeneities in
the sine-Gordon coupling [87]. The mass scale, which is
changed by adjusting the strength of the tunneling between
the tubes, affects the spatial extent of the kinks, and the
overall population. We choose a temperature 60 nK and a

FIG. 4. The sine-Gordon model from coupled condensates.
(a) Sketch of the experimental setup. (b), (c) Example of phase-
reconstruction protocol from the outcome of a single projective
measurement for different pixel resolutions σ (see main text).
(d) Statistics built on 100 samples already shows the scaling
behavior of the equal-time second cumulant stemming from the
center of the trap. The effect of a low resolution σ is to “miss”
kinks [see also (c)] and underestimate phase fluctuations. A good-
quality measurement is already obtained with σ ¼ 1 μm. See
main text for discussion of parameters, and the SM [66] for
further details and data.
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bulk atom density 40 atm=μm to retain an appreciable kink
density, and a mass scale such that hcosϕi ≃ 0.32 in the
bulk. Further discussion is left to the SM [66].
Matter-wave interferometry gives access to spatially

resolved projective measurements of trigonometric func-
tions of the phase nðxÞ cosϕðxÞ and nðxÞ sinϕðxÞ [88]. In
an ideal scenario, the phase itself can then be recovered, but
the finite imaging resolution causes a detrimental coarse
graining [see Fig. 4(b)]. The latter is modeled by convolv-
ing nðxÞ cos½ϕðxÞ� with Gaussians with standard deviation
σ and the phase is then reconstructed from these coarse
grained data [66,89]. Depending on the resolution, the
phase profile may be correctly recovered or kinks may be
washed out by the local coarse graining, see Fig. 4(c).
Finally, by building statistics over many measurements,
phase correlations are obtained. In Fig. 4(d), we show the
outcome of 100 independent samples: a resolution σ ¼
1 μm (a slight improvement on the current experimental
resolution σ ≃ 3 μm [89]) is enough to capture microscopic
phase fluctuations that compare well with analytical results.
Large fluctuations of the second cumulant are due to the
relatively small number of samples: we used 100 as a
typical experimental situation.
Conclusion and outlook.—Exact results on correlation

functions in interacting field theories are scarce: we give
analytical predictions for the large scale phase fluctuations
in the sine-Gordon model, valid at any temperature and
interactions, and in generalized Gibbs ensembles. We
discuss how our results are of ready applicability in
experiments on coupled condensates, where equal-time
correlations are accessed. Unequal-time phase differences
may be accessible by locally exciting the topological
charge via Raman coupling [90]. The main appeal of
our results is its applicability to the quantum regime:
sine-Gordon simulators in the quantum regime may be
within reach of quantum gas microscopes [91,92]. One can
analyze the full range of couplings using [48,65] and
integrability-breaking perturbations [93–96] within the
BFT. It will be important to include diffusive corrections
[97,98]: a possible scenario at low temperatures is that the
diffusive behavior predicted by Damle and Sachdev [45] is
seen at early times, with a slow exponential decay at later
times as predicted by the BFT. In contrast, if integrability is
broken, isolated hydrodynamic modes are present and the
diffusive SY picture should hold at all times and temper-
atures [49]. Studying the timescales of the various cross-
overs implied is of utmost interest for future studies.

Raw data and working codes are available from
Zenodo [99].
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