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We perform calculations of the energy shift of the nuclear clock transition frequency 229Th as a function
of the number of electrons in Th ion. We demonstrate that the dependence of the nuclear frequency on
electron configuration is significant, for example, removing one electron from the atom leads to relative
shift of the nuclear frequency ∼10−7, which is 12 orders of magnitude larger than the expected relative
uncertainty of the nuclear clock transition frequency (∼10−19). This leads to the difference of the nuclear
clock frequencies in Th IV, Th III, Th II, and Th I. The relative change of the nuclear frequency between
neutral Th and its bare nucleus is 1%. We also calculate the field shift constants for isotopic and isomeric
shifts of atomic electron transitions in Th ions.

DOI: 10.1103/PhysRevLett.131.263002

The nucleus of the 229Th isotope has a unique feature of
having very low-energy excitation connected to the ground
state by the magnetic dipole (M1) transition (see, e.g.,
Refs. [1,2] and references therein). The latest, most precise
measurements, give the value of 8.338(24) eV [3] (see also
[4–8]) for the energy of this excitation, which is very small
on a nuclear scale. This feature attracted many researches
for plans to build a nuclear clock of exceptionally high
accuracy—see, e.g., [9,10]. The relative uncertainty is
expected to reach 10−19 [11]. In addition, there are strong
arguments that this nuclear clock would be very sensitive to
physics beyond the standard model including space-time
variation of the fundamental constants, violation of the
Lorentz invariance and Einstein equivalence principle, and
the search for scalar and axion dark matter fields [12–20].
There are plans to use Th ions of a different ionization
degree [11,21,22] and even a solid-state Th nuclear clock
[23–25]. In this work we show that in all these systems the
frequency of the nuclear clock will be different. This is due
to the Coulomb interaction of atomic electrons with the
nucleus, leading to the significant electronic shift of the
nuclear transition frequency. There is also a smaller shift
due to the magnetic interaction.
This electronic shift depends on electron configuration

and it is different in different systems, like Th IV, Th III, Th
II, and Th I, leading to different nuclear frequencies. This
shift for electronic state a is given by

ΔEa ¼ Faδhr2i; ð1Þ

where Fa is the field shift constant of state a which can be
obtained from atomic calculations; δhr2i is the change of
the nuclear root-mean-square radius between the excited
and ground nuclear states (δhr2i ¼ hr2i229m − hr2i229). The
most accurate value for δhr2i was recently derived in

Ref. [22], 229m;229δhr2i ¼ 0.0105ð13Þ fm2. This enables
us to determine the electronic shift of nuclear transition
frequency for different thorium systems by calculating the
field shift constants Fa and using (1). For example, the
difference between the nuclear frequencies of Th III and Th
IV is given by

ΔωN ¼ ½FaðTh2þÞ − FaðTh3þÞ�δhr2i229m;229:

State a in this case is the ground electronic state of the ion.
Note that these field shift constants F appear also in the

calculations of the isotopic and isomeric field shifts of
electronic transition frequencies. The difference is that in
the isotopic and isomeric shifts we need the difference of F
for final state b and initial state a of the electronic
transition. The nuclear state does not change in this
electronic transition. For the isotope shift it is usually
the ground nuclear state. For the isomeric shift it is the
isomeric (excited) state or ground state of the same nucleus.
The isotopic and isomeric field shifts of the electronic
transition frequency are given by

Δωab ¼ ðFb − FaÞδhr2i: ð2Þ

Numerical values ofΔωN andΔωab can be calculated using
values of the constants F for different electron states in Th
IV, Th III, Th II, and Th I presented in Table I. For the
isomeric shifts onemay use 229m;229δhr2i ¼ 0.0105ð13Þ fm2

measured in Ref. [22].
We use the combination of the single-double coupled

cluster and the configuration interaction methods (SDþ CI
[27]) and random-phase approximation (RPA) method to
perform the calculations. The SDþ CI method gives us the
wave functions, while the RPA method gives an effective
operator of the field shift. The details of the calculations are
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presented in the Appendix. Note that we do not include a
contribution of the core electrons which cancels out in the
difference of the values of F presented in the Table I (this
contribution appears in the difference of the nuclear
frequencies between the neutral atom and the bare
nucleus—see below). However, we include the core polari-
zation (RPA) corrections and dominating correlation cor-
rections due to the valence electron–core electron
interaction (CDþ CI) which contribute to the difference
of the field shift constants F (see Appendix).
The results of the calculations are presented in Table I.

We present energy levels and field shift constants for the
ground and some excited states of Th IV, Th III, Th II, and
Th I. We have chosen low-energy excited states and also
some other states of Th III and Th I for which other
calculations and experimental data on isotope shift are
available [22]. The values of the field shift constants are
compared with earlier calculations in Ref. [22].
The difference of the field shift constants between our

calculations and calculations in Ref. [22] is a few percent.
This difference may be used as an accuracy estimate since
the calculations have been done by different methods. The
largest difference is for the ground state of Th II, which is

10%. However, our number leads to more consistent results
for values of δhr2i extracted from the isotope shift
measurements in ions Th II and Th III. Indeed, using
our numbers, F ¼ 49.6 GHz=fm2 for the ground state and
F ¼ 29.1 GHz=fm2 for the state at E ¼ 17122 cm−1, for
extracting the difference in root-mean-square radii
δhr2i232;229 from the isotope shift data [22] leads to the
value δhr2i232;229 ¼ 0.321ð32Þ fm2 (we assume 10%
uncertainty for the values of F), which is closer to the
data extracted from four transitions in Th III [0.315(32),
0.312(42), 0.338(44), 0.322(53), see Table I in [22] ]. When
all five numbers are taken into account, four numbers for
Th III from Ref. [22] and our number for Th II, 0.321(32),
the final result is δhr2i232;229 ¼ 0.320ð15Þ fm2 [the final
value of [22] is δhr2i232;229 ¼ 0.299ð15Þ fm2]. Our result is
in better agreement with the latest most accurate literature
value δhr2i232;229 ¼ 0.334ð8Þ fm2 presented in Ref. [28].
The new value of δhr2i232;229 leads to a slightly different
value of δhr2i229m;229. Using the ratio of the isomeric and
isotopic shifts from Ref. [10] we find δhr2i229m;229 ¼
0.0112ð13Þ fm2. It is 7% larger but agrees within error
bars with the value δhr2i229m;229 ¼ 0.0105ð13Þ fm2 pre-
sented in [22]. We adopt this new evaluation in the
following analysis.
It is instructive to explain why the field shift constants F

have different signs for different electron states. Orbitals
s1=2 and p1=2 penetrate nucleus and are highly sensitive to
the nuclear radius (the lower component of the Dirac spinor
of the relativistic p1=2 orbital has angular quantum numbers
of s1=2 orbital). An increase of the nuclear radius leads to a
decrease of the attraction to the nucleus, therefore energies
s1=2 and p1=2 move up and constant F is positive. Higher
orbitals p3=2, d, and f do not penetrate the nucleus, so the
direct term F̂ in Eq. (A5) is negligible. The effect comes
from the correction to the electron core potential δVcore
which is dominated by the Coulomb field of s1=2 electrons.
An increase of the nuclear radius makes the attraction to the
nucleus weaker, increases the radii of the s1=2 orbitals, and
makes negative correction δVcore to the core electron
Coulomb potential. This is why F for p3=2, d, and f
electrons is negative. The sign may also be explained as the
addition of valence p3=2, d, or f electron acting to increase
the positive Coulomb energy of the electron repulsion. As a
result, the s1=2 electron energies and distances from the
nucleus increase and their sensitivity to the change of the
nuclear radius decreases. Thus, the effect of the higher
wave valence electron is negative.
Using the field shift constants for the ground states of

each ion from Table I (we use our numbers for consistency),
the value δhr2i229m;229 ¼ 0.0112ð13Þ fm2 (see above) and a
formula similar to Eq. (2) we obtain the differences
between nuclear frequencies in different thorium ions.
The results are presented in Table II. We see that the
difference is significant. It exceeds the projected relative

TABLE I. Field shift constant F for the ground and some
excited states of Th IV, Th III, Th II, and Th I.

F (GHz=fm2)

Atom
or ion State

Experimental energy
(cm−1) [26] Present Ref. [22]

Th IV 5f 2Fo
5=2 0 −55.0

5f 2Fo
7=2 4325 −53.0

6d 2D3=2 9193 −23.3
6d 2D5=2 14 586 −20.5
7s 2S1=2 23 130 92.1
7p 2Po

1=2 60 239 2.7

7p 2Po
3=2 73 055 −5.3

Th III 5f6d 3Ho
4

0 −68.0 −68.7
6d2 3F2 63 −39.9 −36.6
5f2 3H4 15 148 −83.3 −89.5
5f6d 1Po

1
20 711 −62.2 −63.6

5f2 3F4 21 784 −86.5 −85.5
5f2 3P0 29 300 −82.2 −84.1

Th II 6d27s 2D3=2 0 49.6 54.6
5f6d2 �3=2 −65.0
5f6d7s �3=2 15 145 −45.8
5f6d7s �3=2 15 711 −36.9
5f6d2 �3=2 17 122 −29.1 −31.6
5f6d7s 2Fo

5=2 12 472 −18.3
5f6d7s �5=2 −36.3
5f6d7s 4Do

5=2 14 545 −63.9
5f6d7s �5=2 16 033 −46.8

Th I 6d27s2 3F2 0 58.6
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uncertainty of the nuclear clocks by many orders of
magnitude. It is worth noting that the shift does not
contribute to the uncertainty budget. It only means that
the frequency of the nuclear transition is different in
different thorium systems.
It is interesting to determine the nuclear frequency

difference between neutral (or nearly neutral) 229Th and
the bare 229Th nucleus. This difference is strongly domi-
nated by contributions from 1s electrons. Using the RPA
calculation (A4) we get Fð1sÞ ¼ 8.23 × 108 MHz=fm2.
The total energy shift caused be two 1s electrons is
1.73 × 107 MHz; the total shift from all core electrons is
2.07 × 107 MHz ¼ 8.57 × 10−2 eV, which is ∼1% of the
nuclear frequency.
Electronic correction to the nuclear frequency comes

also from magnetic interaction between electrons and
nucleus. The first order gives ordinary magnetic hyperfine
splitting of the transition frequencies. The magnetic shift is
given by the second-order magnetic dipole hyperfine
correction to the energy

δEhfs
g ¼

X

n

hgjĤhfsjni2
Eg − En

: ð3Þ

Here, index g stands for the ground electronic state, Ĥhfs is
the magnetic dipole hyperfine structure operator. Values of
δEhfs

g are different for the ground and isomeric nuclear
states since their magnetic moments and spins are different.
In addition, there is the second order contribution from the
mixing of the ground and isomeric nuclear states by the
magnetic filed of electrons. Magnetic moment values can
be found in Ref. [10]. Calculations show that the frequency
shift due to the second-order hyperfine interaction is
significantly smaller than the electronic shift considered
in the present work. This relative magnetic shift ranges
from ∼10−14 to ∼10−11 depending on the Th ion.

This work was supported by the Australian Research
Council Grants No. DP230101058 and No. DP200100150.

Appendix: Method of the calcualtions.—We start the
calculations from the relativistic Hartree-Fock (RHF)
procedure for the closed-shell Th V ion. The RHF

Hamiltonian has the form

ĤRHF ¼ cα · pþ ðβ − 1Þmc2 þ Vnuc þ VBreit þ Ve; ðA1Þ

where c is the speed of light, α and β are the Dirac
matrixes, p is the electron momentum, Vnuc is the
nuclear potential obtained by integrating the Fermi
distribution of the nuclear charge density, VBreit is the
operator of the Breit interaction which includes magnetic
interaction and retardation [29]. The single-electron basis
states for valence electrons are calculated in the field of
the frozen core using the B-spline technique [30]. These
basis states are used in all calculations. This corresponds
to the so-called VN−M approximation [31], where N is
the total number of electrons, M is the number of
valence electrons (M ¼ 1, 2, 3 or 4 in our case), and
N −M is the number of core electrons.
We use the single-double coupled-cluster method [27] to

include the correlations between valence and core elec-
trons. Solving the SD equations involves iterations for the
core and for the valence states until full convergence is
achieved. As a result, the all-order correlation operators Σ̂1

and Σ̂2 are produced. The Σ̂1 operator is the single-electron
operator which describes the correlation interaction of a
particular valence electron with the core. The Σ̂2 operator is
the two-electron operator which describes the screening of
the Coulomb interaction between valence electrons by core
electrons. The resulting effective CI Hamiltonian has the
form

ĤCI ¼
XM

i¼1

ðĤRHF þ Σ̂1Þi þ
XM

i<j

�
e2

rij
þ Σ̂2ij

�
: ðA2Þ

The energy and wave function of the many-electron state a
is found by solving the CI equation

ðĤCI − EaÞXa ¼ 0; ðA3Þ

where Xa contains the coefficients of the expansion of the
valence wave function over single-determinant basis states.
To calculate the field shift constants we need an effective

operator of the field shift F̂. Its initial form can be written as
F̂ ¼ δVnuc=δhr2i, where δVnuc is the change of nuclear
potential due to the change of nuclear radius. Then the RPA
method [32] is used to include the effect of core polari-
zation, i.e., to take into account the effect of changing
nuclear radius on all atomic electrons.
The RPA equations have a form (see, e.g., [32,33])

ðĤRHF − ϵcÞδψc ¼ −ðF̂ þ δVcoreÞψc; ðA4Þ

where ĤRHF is given by (A1), index c numerates single-
electron states in the core, ψc and δψc are corresponding
single-electron functions and corrections due to the field

TABLE II. Change of nuclear frequency ωN between ions of
229Th.

ΔωN

Ions (GHz) (eV) ΔωN=ωN

Th I � � � Th II 0.10 4.1 × 10−7 5.0 × 10−8

Th II � � � Th III 1.3 5.4 × 10−6 6.4 × 10−7

Th III � � � Th IV −0.15 −6.2 × 10−7 −7.4 × 10−8

Th II � � � Th IV 1.2 5.0 × 10−6 6.0 × 10−7
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shift operator F̂, and δVcore is the change of the self-
consistent Hartree-Fock potential due to the change in all
core functions. Solving Eqs. (A4) self-consistently allows
us to determine δVcore. Note that the core is the same for Th
IV, Th III, Th II, and Th I. Therefore the SD and RPA
equations have to be solved only once. Then the field shift
constant is given by

Fa ¼ hXaj
XM

i¼1

ðF̂ þ δVcoreÞijXai; ðA5Þ

where the wave function for state a comes from solving the
CI Eq. (A3).
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