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In this work, we investigate a two-dimensional system of ultracold bosonic atoms inside an optical
cavity, and show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the
atomic ground state. The latter corresponds to a 2D Peierls transition, generalizing the spontaneous bond
dimerization driven by phonon-electron interactions in the 1D Su-Schrieffer-Heeger (SSH) model. Here the
bosonic nature of the atoms plays a crucial role to generate the phase, as similar generalizations with
fermionic matter do not lead to a plaquette structure. Similar to the SSH model, we show how this pattern
opens a nontrivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states,
that we characterize by means of a many-body topological invariant and through its entanglement structure.
Finally, we demonstrate how this higher-order topological Peierls insulator can be readily prepared in
atomic experiments through adiabatic protocols. Our work thus shows how atomic quantum simulators can
be harnessed to investigate novel strongly correlated topological phenomena beyond those observed in
natural materials.
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Introduction.—In the last decades, topology has reached
a central role in the description and classification of phases
of matter [1]. Contrary to the standard Landau paradigm
[2], topological phases are not distinguished by different
spontaneous symmetry-breaking (SSB) patterns, but rather
by different nonlocal topological invariants [3,4].
Nontrivial topology can manifest in the presence of
conducting edge states in bulk insulators [5–7], quantized
conductances [8–11], or fractional charges [12–14], which
in the case of symmetry-protected topological (SPT) phases
are robust against perturbations that do not break certain
protecting symmetries [15]. Recently, this class has been
enlarged to include higher-order SPT (HOSPT) phases
[16,17], protected by crystalline symmetries and hosting
edge states of codimension larger than one, such as corner
states in 2D [18,19]. Despite recent progress in the study of
interacting HOSPT phases [20–36], a full classification is
still lacking.
One of the earliest examples of a SPT phase is found in

the Su-Schrieffer-Heeger (SSH) model for polyacetylene
[37]. In this 1D chain, interactions between electrons and
phonons induce a Peierls instability [38], giving rise to aZ2

SSB characterized by a dimerized bond pattern, resulting in
a topologically nontrivial bulk protected by a chiral
symmetry [39]. In this case, the interplay between sym-
metry breaking and symmetry protection gives rise to
delocalized fractional charges [40], absent in the non-
interacting case [3,4].

As shown by Benalcazar, Bernevig, and Hughes (BBH)
[16,17], a 2D fermionic system with dimerized bonds in the
x and y directions can host a HOSPT phase, but only in the
presence of a nonzero flux. The latter is not generated by
generalizations of the SSH model to 2D, since the required
symmetry-broken pattern is not achieved spontaneously, as
shown by recent Monte Carlo studies [41].
The situation is different for the bosonic BBH model

[21,27], where a topological gap appears without any flux.
A natural question is whether the corresponding HOSPT
phase can emerge through a SSB process from a symmetric
bosonic Hamiltonian, where, similarly to the 1D case [42],
the interplay between SSB and symmetry protection could
be further explored. Contrary to solid-state materials,
ultracold atoms in optical lattices allow us to investigate
strongly correlated bosonic matter in highly controllable
experiments [43–45]. Although optical lattices are static,
the role of phonons can be emulated using a second atomic
species [46] or with a cavity [47,48]. In 1D, these synthetic
phonons drive solid-state-like phenomena, including topo-
logical Peierls insulators [42,49–59] and fractional charges
[60–62], also predicted in the presence of dipolar inter-
actions [63].
In this work, we extend these results to 2D by consid-

ering a system of ultracold bosonic atoms coupled to a
cavity, a setup that has been previously employed to
prepare quantum phases such as supersolids or charge
density waves [64,65]. We show how, by modifying the
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phase of the cavity mode, a plaquette-ordered structure with
dimerization both in the x and y directions appears, driven by
photon-mediated interactions. This symmetry-broken pat-
tern is indeed the same as the one required in the bosonic
BBH model, but here it emerges spontaneously through a
bosonic Peierls transition. Contrary to the 1D case [42],
where fermions and (hardcore) bosons are essentially
equivalent, our results show how bosonic particles in 2D
can self-organize in an intrinsically new phase ofmatter, that
cannot be generated with a symmetric fermion-phonon
model [41].We confirm the topological nature of this phase,
that we denote higher-order topological Peierls insulator
(HOTPI), using a many-body topological invariant and
through its entanglement structure. Finally, we propose
and benchmark a quantum simulation protocol to adiabati-
cally prepare this phase in current atomic experiments.
Bose-Hubbard model with cavity-mediated correlated

tunneling.—We consider a system of ultracold bosonic
atoms trapped in the lowest band of a L × L square optical
lattice. The atoms are coupled to two cavity modes created
by two cavities aligned along the x and y directions,
together with a laser pump with a standing wave structure
in the z direction [Fig. 1(a)]. In the basis of localized
Wannier functions, the system is described by the following
Hamiltonian [66]:

H ¼ −t
X

hi;ji
ðb†i bj þ H:c:Þ þ U

2

X

j

njðnj − 1Þ

− Δc

X

μ∈ fx;yg
a†μaμ þ g

X

μ∈ fx;yg
ðaμ þ a†μÞBμ; ð1Þ

with Bμ ¼
P

ið−1Þiþ1ðb†i biþμ̂ þ H:c:Þ, where μ̂ denotes the
unit translation in the x̂=ŷ direction. Here, b†i =bi denotes
the bosonic creation(annihilation) atomic operator at site i,
and a†μ=aμ is the creation(annihilation) photon operator for
the x=y cavity mode. The parameters t and U correspond to
the standard nearest-neighbor (NN) tunneling and Hubbard
onsite interactions [67], respectively, and Δc is the cavity-
pump detuning [66]. Finally, g characterizes the atom-
cavity interactions, where, differently to previous experi-
ments [64,65], the latter is not coupled to the density but to
the staggered tunneling Bμ. This leads to a mediated
tunneling term for each cavity separately, since the scatter-
ing between the cavities can be neglected [68]. Similarly to
the 1D case [42], this is achieved by considering a relative
phase ϕ ¼ π=2 between the cavity modes and the optical
lattice [Fig. 1(b)] (see [68]), guaranteeing momentum
conservation in the scattering process.
The atom-cavity Hamiltonian is invariant under Z2 × Z2

transformations, eachZ2 symmetry corresponding to a one-
site translation of the atoms in the direction μ together with
the transformation aμ → −aμ. We anticipate that the HOTPI
will be driven by the spontaneous breaking of this symmetry.
Before analyzing the phase diagram, we adiabatically

eliminate the cavity modes in the presence of a large cavity
decay rate [66], resulting in the limit of large detuningΔc in
the following expression (see [68]):

Heff ¼−t
X

hi;ji
ðb†i bjþH:c:ÞþU

2

XN

i¼j

njðnj−1ÞþUc

L2

X

μ

B2
μ;

ð2Þ
withUc ¼ g2L2=Δc. The last term inEq. (2) accounts for the
cavity-mediated all-to-all interactions arising from the
correlated tunneling terms in Eq. (1). The latter differs from
the cavity-mediated density-density interaction considered
in Refs. [64,65] for ϕ ¼ 0, giving rise to a charge density
wave and a supersolid phase. As we show below, a HOTPI
can be obtained with the same experimental setup by
choosing instead ϕ ¼ π=2.
Bosonic Peierls transition in 2D.—We study the

phase diagram of the effective Hamiltonian (2) in the
hardcore boson limit (U ≫ t; Uc) as a function of

(b)

x

x

y

z

z

(a)

FIG. 1. Atom-cavity experimental setup: (a) Ultracold bosonic
atoms are trapped in the lowest band of a 2D optical lattice. The
atoms are coupled to two cavity modes created by two optical
cavities aligned in the x and y directions, and to a laser pump
aligned in the z direction. (b) In each direction, the relative phase
between the optical lattice (blue) and the cavity mode (yellow) is
chosen such that the nodes of the latter coincide with the sites of
the lattice. In this configuration, the effective Hamiltonian
describing the atom-cavity system contains correlated-tunneling
terms (red arrows), where atoms can tunnel between NN sites by
absorbing or emitting a photon (white sphere) from the cavity
(curly line).
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the cavity-mediated interaction strength Uc. In the follow-
ing, and unless stated otherwise, we fix the atomic density
to half-filling, N ¼ L2=2, and consider open boundary
conditions. The ground state is obtained using a density-
matrix renormalization group (DMRG) algorithm [69]
based on matrix product states [70], where we consider
bond dimensions up to χ ¼ 1000.
As we show in Fig. 2(a), for positive or small negative

values of Uc, the system is in a superfluid (SF) with off-
diagonal long-range order, characterized by a finite value of
the single-particlemomentumdistributionSðqÞ atq¼ð0;0Þ,
SSF ≡ Sð0Þ, with

Sðq⃗Þ ¼ 1

L2

X

i;j

hb†i bj þ H:c:ieiqðri−rjÞ; ð3Þ

where the indices in the sum run over every pair of sites. For
Uc=t ⪅ −27, the cavity-mediated interactions induce a
plaquette-ordered phase [71,72] through a spontaneous
breaking of the Z2 × Z2 symmetry. The latter is charac-
terized by a finite value of the plaquette structure factor [73],

SP ¼ 1

ðL − 1ÞL − 3

X

hk;li
ϵðk; lÞ

× ½hb†i bjb†kbl þ H:c:i − hðb†i bj þ H:c:Þ2i�; ð4Þ

where the sum hk; li runs overNNpairs, hi; ji is a fixed bond
in the middle of the lattice, and the form factor ϵðk; lÞ is
defined as in Ref. [73].
Figure 2(b) shows the real-space configuration of the

plaquette-ordered phase, where the expectation value of the
NN bosonic tunneling reveals a bond dimerization both in
the x and y directions, contrary to the translational invariant
SF case [Fig. 2(c)]. Figure 2(a) shows the finite-size scaling
for the ground state values of the order parameters in each
phase, demonstrating how SP (SSF) goes to zero (finite
value) for the SF phase in the thermodynamic limit
(L → ∞), and vice versa for the plaquette-ordered phase.
Finally, we show the extrapolated values as a function of
Uc=t, consistent with a 2D bosonic Peierls transition
between these two phases at Uc=t ≈ −27. The Z2 × Z2

SSB is driven by the competition between the usual
tunneling and the atom-photon interactions, resulting in
a plaquette pattern for the tunneling amplitudes. This is a
generalization of the Peierls transition driven by electron-
phonon interactions in the SSH model [37]. In this case, the
bosonic nature of the atoms, and an equal coupling to
the cavities [65], are crucial to obtain this phase, absent in
the fermionic 2D SSHmodel, where only oneZ2 symmetry
is broken [41]. Since this emergent plaquette structure
corresponds to the one imposed externally in the bosonic
BBH model [21,27], it is therefore natural to ask whether
this phase is topologically nontrivial.
Higher-order topological Peierls insulator.—We ana-

lyze now the topological properties of the plaquette-ordered
phase, showing that it corresponds to a HOSPT phase.
Similarly to the bosonic BBH model [21,27], the latter is
protected by a Uð1Þ × C4 symmetry, where Uð1Þ is the
particle number conservation and C4 is the lattice rotational
symmetry, preserved here in the plaquette phase. We
confirm the topological nature of the phase through its
entanglement spectrum (ES) structure [74] and a many-
body topological invariant [75].
We start by studying the entanglement spectrum along

different bipartitions. As a result of the SSB, the plaquette-
ordered phase is fourfold degenerate, connected by one-site
translations along the x and y directions. Finite-size effects
introduce energy splittings in the ground-state manifold,
vanishing exponentially with the system size. Although the
lowest-energy state for finite sizes is the one with positive
values of hb†i bj þ H:c:i around the corners [Fig. 2(b)], we
stress that the topological configuration, presenting neg-
ative values [Fig. 3(b)], can be adiabatically prepared as a
long-lived metastable state, as we show below.
Figure 3(a) shows the ES for the ground state in the

plaquette-ordered phase at different bipartitions. In general,
the ground-state wave function can be written as jψGSi ¼P

n e
−ϵn=2jψniA ⊗ jψniB, where A and B are complemen-

tary subsets of lattice sites, and ϵn is the corresponding ES
associated to that bipartition. For HOSPT phases, biparti-
tions that create virtual corners lead to even degenerate

(c)

(a)

(b)

FIG. 2. Phase diagram: (a) SF (SSF) and plaquette (SP) order
parameters in the thermodynamic limit by a finite-size scaling,
indicating the presence of a plaquette-ordered phase for
Uc=t ⪅ −27, and a SF for Uc=t⪆ − 27. The insets show the
finite-size scaling at Uc=t ¼ −80 (left) and Uc=t ¼ 10 (right) for
system sizes L × L, with L∈ f4; 6; 8; 10g. (b) and (c) show the
real-space configuration of the plaquettes at Uc=t ¼ −80 and
the SF at Uc=t ¼ 30, respectively. The color of the lattice sites
and bonds denotes the expectation value of the onsite occupation
hnii and the NN tunneling hb†i b†j þ H:c:i, respectively.
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spectra [74]. In our case, and similarly to the bosonic BBH
model, the broken Z2 × Z2 symmetry allows for four
inequivalent bipartitions. Only the one that creates a virtual
corner surrounded by weak bonds, similar to the virtual
edges in the 1D case [50], has a degenerate ES [Fig. 3(a)].
The ES is a bulk quantity that provides information on

the topological nature of the phase, but also indicates the
possibility of finding localized states in a physical corner
for finite systems. Such corner states are fractionalized
charges which correspond to an accumulation of a charge
of Q ¼ 1=2 [27] with respect to the average bulk filling
n ¼ 0.5. Even if there is no bulk-boundary correspondence
for a HOSPT phase protected by the Uð1Þ × C4, as
indicated in [21,27], or in the presence of global inter-
actions [76], we find a signature of corner states in the
topological configuration, as depicted in Fig. 3(b). The
corner states are not necessarily located in the middle of the
gap, and their localization length can be quite large if they
are close to bulk bands, as it appears to be the case here
given the small extra atomic occupation with respect to
half-filling. A more in-depth characterization requires,
therefore, the study of larger system sizes.
We further confirm the topological nature of the pla-

quette-ordered phase using a many-body topological in-
variant. We calculate a many-body Berry phase γ by
introducing a local flux through the central plaquette to
the Hamiltonian, as described in Ref. [75], and computing
the discretized Wilson loop as we vary the flux along a
close path C in parameter space [77]. The Berry phase is
approximated by γmC ¼ Arg

Q
m−1
i¼0 hψ̂ ijψ̂ iþ1i, where jψ ii is

the ground state for a given flux in the discretized loop ofm
points. The Berry phase, independent of the path, is

recovered in the limit of large m. We compute this quantity
for a system with L ¼ 10 and obtain the values γC ¼
4 × 10−5 and γC ¼ 0.9995 (mod 2π) for the SF and
plaquette-ordered phases, respectively, confirming the
topological nature of the latter. Contrary to the protection
of the corner states described above, the topological
invariant remains quantized in the presence of global
interactions, demonstrating the robustness of the phase.
Experimental realization.—We introduce now a protocol

to prepare the HOTPI experimentally [Fig. 4(a)]. To pre-
pare the phase adiabatically, we need to break the Z2 × Z2

symmetry explicitly to avoid closing the gap at the
transition. Imposing the appropriate double-well structure
for the starting point allows us to select the topological
configuration [Fig. 3(b)] among the quasidegenerate
ground-state manifold. Even if for finite system sizes this
configuration has a slightly higher energy than the others,
they are separated by energy barriers that diverge with the
system size. As a consequence, during the adiabatic
preparation, we are guaranteed to stay in the metastable
topological symmetry sector, because shifting to the trivial
configuration would require a global Z2 × Z2 perturbation,
which has an exponentially small probability.
We start with a Mott insulator with unit filling in a square

optical lattice with wavelength λ in each direction, as
routinely prepared in ultracold atomic experiments.
Following Ref. [78], we then introduce a second optical
lattice with wavelength λ=2, creating a superlattice of
double wells with weak bonds connecting the corners.
The latter imprints the plaquette structure in the bosonic
tunneling and breaks the Z2 × Z2 symmetry explicitly.

(a) (b)

FIG. 3. ES structure and corner states. (a) Lower eigenvalues of
the ES for the bipartitions indicated in the Figs. 1–4. We consider
the ground state of a system with size L ¼ 4 at Uc=t ¼ −40
(within the plaquette-ordered phase). (b) Real-space bond pattern
and local occupation for the topological configuration at
Uc=t ¼ −100, for a system with L ¼ 10. Because of the
quasidegeneracy of the ground state, this state is not the lowest
energy state of the system, but it is instead metastable.

(a) (b)

FIG. 4. Adiabatic preparation of the HOTPI. Sketch of the three
main steps of the preparation scheme (a), starting with a deep
lattice with wavelength λ, adding a second optical lattice with
wavelength λ=2, and turning on the cavity and adiabatically
eliminating the first lattice. (b) Infidelity 1 − F (where F ¼
jhψ i−1jψ iij is the quantum fidelity at each step), superfluid (SSF),
and plaquette (SP) order parameters for a finite system with
L2 ¼ 64, along the third step of the experimental protocol, where
the two-dimensional dimerization δ is taken from 1 to 0 (see main
text). The results are obtained for Uc=t ¼ −100.
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At this point, the atomic Hamiltonian corresponds to the
bosonic BBH model in the limit of zero interwell tunneling
[27]. Explicitly,

HðδÞ ¼ HeffðUc ¼ 0Þ þ δ
X

i;μ

ð−1Þsiðb†i biþμ̂ þ H:c:Þ ð5Þ

for the case positive δ ¼ 1, where si ¼ i0 þ i1 and
i ¼ ði0; i1Þ. We now turn on the cavity and tune the
coupling Uc to the desired value. By slowly decreasing
the intensity of the original λ-wavelength lattice we take δ
to zero, ending up with the atom-cavity Hamiltonian
in Eq. (2).
The protocol is adiabatic as the gap remains open along

the path in parameter space. This is shown in Fig. 4(b),
where we compute the ground-state infidelity after taking
infinitesimal parameter changes along the path by running
the DMRG algorithm at each δ step [79]. Although we did
not check the timescales involved in the state preparation,
this can be made faster by increasing the dimerization δ,
which increases the system’s gap. In Fig. 4(b), we also
show how SP and SSF for a finite size system are consistent
with a state in the HOTPI.
Regarding the detection of the HOTPI, the self-organized

atomic structure is directly related to the presence of a
coherent cavity field, which can be directly measured
experimentally [65], and the real-space structure can be
observed using a quantum gas microscope [80,81]. Finally,
the nontrivial topological nature of the phase can be
revealed by measuring the entanglement spectrum [82,83].
Conclusions and outlook.—We showed how photon-

mediated interactions in a 2D bosonic system can give rise
to a HOTPI. The latter can be prepared experimentally
using ultracold bosonic atoms in optical lattices, coupled to
two perpendicular cavity modes. The cavity-mediated all-
to-all atomic interactions drive a Peierls transition, giving
rise to a plaquette-ordered phase if the relative phases
between the lattice and the cavity modes are properly
chosen. Finally, we demonstrated the topological nature of
the phase and proposed an adiabatic protocol to prepare it
in current atomic experiments. We note that the effect of
dissipation in the topology of the full atom-cavity system
could be investigated beyond the effective description,
which we leave for future studies. Moreover, one should
also take into account the inhomogeneities of the trapping
potential, which might affect the stability of the plaquette-
ordered phase. An alternative is to consider the combina-
tion of box traps and optical lattices as in [84], which are
promising for the realization of topological phases. In the
future, it would be interesting to extend the setup and
include multimode cavities, allowing atom-photon topo-
logical defects that would generalize the topological
solitons and fractionalized quasiparticles found in the
SSH model to 2D [37]. Moreover, by exploring the regime
of softcore bosons, we expect to find plaquette-ordered

supersolid phases, similar to the density-ordered super-
solids found in Refs. [64,65].
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