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The high-fidelity analysis of many-body quantum states of indistinguishable atoms requires the accurate
counting of atoms. Here we report the tomographic reconstruction of an atom-number-resolving detector.
The tomography is performed with an ultracold rubidium ensemble that is prepared in a coherent spin state
by driving a Rabi coupling between the two hyperfine clock levels. The coupling is followed by counting
the occupation number in one level. We characterize the fidelity of our detector and show that a negative-
valued Wigner function is associated with it. Our results offer an exciting perspective for the high-fidelity
reconstruction of entangled states and can be applied for a future demonstration of Heisenberg-limited atom
interferometry.
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High-fidelity preparation, manipulation, and detection of
quantum states of many indistinguishable atoms have been
greatly improved during the last decades. These facilitate
exciting developments, from fundamental quantum atom
optics [1,2] to entanglement-enhanced metrology [3].
Entangled states serve as highly sensitive input states of
atom interferometers, reducing the resolution limit from the
standard quantum limit (SQL) to the Heisenberg limit [4].
Applications range from interferometry [5–14] and mag-
netometry [15–18] to atomic clocks [19–22] and inertial
sensing [23,24]. To date, atom counting noise represents
one of the crucial limitations in current experiments,
affecting fundamental studies and applications.
Recent experiments creating entangled atomic quantum

states in ensembles of indistinguishable atoms have reported
counting noise that ranges from 3 atoms at a total number
of 600 atoms [25], to 1.6 atoms at 3000 atoms [26], to 10
atoms at 104 [27,28], to better than 17 atoms at 105 [14], and
to 50 atoms at 5 × 105 [11]. Reducing the counting noise
below the single atom level, where the quantization of
the atomic signal becomes apparent, promises relevant
improvement. For example, such a counting resolution
would allow for the direct detection of Bell correlations
between two separated atomic ensembles [29] and the
observation of parity signals in Hong-Ou-Mandel-ike inter-
ference experiments with many-particle states [30,31].
In atom interferometry, number-resolving counting (NRC)
can be applied to demonstrate a Heisenberg-limited

resolution [32,33]. NRC has been obtained in a cavity-
based detection [34], while restricted to a discrimination
between 0 and 1, the scaling to larger numbers is an open
challenge. Single-atom resolved detection has also been
obtained in free-falling clouds [35–39], and was applied to
extract correlations and entanglement. NRC for up to 1000
atoms has been demonstrated in amillimeter-sizedmagneto-
optical trap (mMOT) [40,41], but was not applied to the
detection of many-body quantum states.
The fine calibration of quantum measurement devices

generally requires quantum detection tomography (QDT)
techniques [42,43]. QDT provides a set of positive-
operator-valued measures (POVM) that fully characterize
the detector. So far, QDT has been mainly investigated for
optical photocounting and homodyne detection [44–48]
and also applied to characterize qubit readout for pairs of
trapped ions [49] and quantum computing machines [50],
but its potential has not yet been leveraged for the
characterization of neutral-atom quantum systems.
In this Letter, we apply a MOT-based number

counting [51] to analyze a simple dynamical evolution
of a many-body spin state with single-atom resolution. We
generate an atomic Bose-Einstein condensate (BEC) in one
atomic clock level, apply a microwave (MW) coupling
pulse of variable duration on the atomic clock transition,
and count the number of atoms in the other, initially empty,
level. Rabi dynamics is used to perform QDT. In particular,
we are able to follow the time evolution of the coherent spin
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state with a clear resolution of the number quantization.
The number assignment fidelity of the detector is larger
than 99.0% for up to 15 atoms, and is reduced to 72.3%
when a specific spin level is selected. By applying a
stochastic matrix approach to the recorded histograms,
we obtain a set of nonclassical POVM operators that
fully characterize the detection process. The expected
Poissonian distributions are reproduced with a statistics-
limited fidelity of up to 99%. We predict that the single-
level detection operates an interferometric measurement
with sub-SQL sensitivity using spin-squeezed states and
monitoring a low-populated output. This Letter is a first
step forward toward the detection, characterization, and
application of entangled many-body quantum states with
high-fidelity NRC.
We generate a BEC of 105 87Rb atoms in a crossed-beam

optical dipole trap (ODT) with a preparation time of 3.3 s;
see Ref. [52] for details on the BEC production. We prepare
the BEC in the hyperfine level jF;mFi ¼ j2; 2i and reduce
the number of atoms to enter the regime of our number-
resolved counting. This is realized by transferring 34 atoms
to the level j1; 1i, on average, and a subsequent optical
removal of the residual atoms in the F ¼ 2 manifold. A
further MW pulse transfers the remaining atoms to the level
j2; 0i. A final resonant light push on the F ¼ 1 manifold
terminates our state preparation with 34 and 0 atoms in the
clock states j2; 0i and j1; 0i, respectively. The total number
of particles fluctuates by 6.4 atoms, dominated by projec-
tion noise (5.8 atoms).
We apply a resonant MW pulse on the clock transition

with a variable duration ranging from t ¼ 2.5 to 56 μs.
The many-body state in the pseudospin-1=2 system can
thus be represented by a coherent spin state (CSS), with
maximal total spin, but variable rotation angle θ. The
analysis of the CSS is based on counting the number of
atoms in the level j1; 0i. To this end, the atoms in level
j2; 0i are removed and the remaining atoms are counted by
fluorescence detection in the mMOT. The detection
process starts with a strong reduction of the atomic density
by switching off one of the two dipole trap laser beams.
A σþ-polarized light push at a magnetic field of 6.7 G
accelerates and removes the F ¼ 2 atoms from the trap,
while the probability of unwanted collisions is reduced by
the low density. The removal of atoms in level j2; 0i has a
finite extinction ratio of 42.4 dB, resulting in an
unwanted, Poisson-distributed remainder of 0.27 atoms
maximally. These atoms are produced by two processes:
(i) they escape the removal process to the level F ¼ 1
because of imperfect optical pumping, and (ii) they are
captured from the background gas, which is temporally
increased after the operation of the two-dimensional
magneto-optical trap. We detect the remaining atoms
in the mMOT setup, consisting of a magneto-optical trap
with millimeter-sized illumination beams [51,52]. The
optical dipole trap is switched off to start an equilibration

phase in the mMOT of 50 ms. Subsequently, the main
atom counting signal is obtained by collecting fluores-
cence light for 65 ms with a charge-coupled-device
camera. Finally, a second image without atoms is recorded
for background subtraction. The spin preparation and
detection processes require a total of 1.8 s. After nine
measurement runs, the system is halted for 60 s to avoid a
slow increase of the mMOT capture rate from the back-
ground gas.
Figure 1(a) shows a sketch of the experimental setup

including the mMOT and ODT beams and the high-
numerical-aperture detection objective. Figure 1(b) shows
a time trace of 100 consecutive number measurements in
j1; 0i for three different MW pulse lengths. The measured
number of atoms accumulate at integer numbers, enabling a
number assignment fidelity ranging from 99.7% at 1 atom
to 99.0% at 15 atoms [52].
Figure 2(a) shows the mean number of the transferred

atoms as a function of the microwave pulse duration. The
mean atom number follows a sinusoidal Rabi oscillation
with a Rabi frequency Ω ¼ 2π × 8.2 kHz (see below).
Figures 2(b)–2(e) present the exemplary histograms, which
can be associated to rotation angles θ ¼ Ωt. Without
rotation (b), the distribution shows the detection of recap-
tured atoms, which can be treated as statistical dark counts
in the detection system. For finite rotations (c)–(e), the
distributions shift to higher atom number and increased
width.
Under the assumptions that the microwave generates a

homogeneous coupling to the cloud and that level j1; 0i is

FIG. 1. (a) Sketch of the experimental setup. (b) Time trace of the
sequentially measured number of atoms in dependence of theMW
pulse length. The number of atoms in j1; 0i after 2.52 μs (dark blue
circles), 8.4 μs (blue rectangles), and 18.48 μs (light blue dia-
monds) is shown for up to 9 atoms for 1106 successive measure-
ments. The accumulation of data points at integer numbers is
indicating our number-resolving counting. The histogram of the
fluorescence signal on the right further illustrates this effect.
Negative values are caused by background substraction.
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initially completely empty—that are both very well ful-
filled in our case—we can use the recorded data for QDT.
We associate the two clock levels j1; 0i and j2; 0i with
the letters a and b, respectively, to simplify the notation.
We model the detection by expressing the probability
of a measurement result n (the number of atoms in clock
level a) as

PVðnjtÞ ¼
Xþ∞

m¼0

Vn;mPidðmjtÞ; ð1Þ

in terms of a stochastic matrix V with non-negative
elements Vn;m ≥ 0, which satisfies the normalization
property

P
n Vn;m ¼ 1 for all m. Vn;m can be interpreted

as the probability to measure n atoms if m atoms reach
the detector. We use the ideal probability PidðmjtÞ ¼
Tr½jmihmjρ̂ðtÞ�, where ρ̂ ¼ Pþ∞

N¼0 ρN jNibj0iah0jahNjb is
the generic atomic state before starting the dynamics,
ÛðtÞ ¼ exp½−iΩRtĴx� describes the Rabi coupling, Ĵx ¼
ðâ†b̂þ âb̂†Þ=2, Ĵy ¼ ðâ†b̂ − âb̂†Þ=ð2iÞ, and Ĵz ¼ ðâ†â −
b̂b̂†Þ=2 are pseudospin operators, and ρ̂ðtÞ ¼ ÛðtÞρ̂ ÛðtÞ†.
The assumption that the initial state is diagonal is well
justified experimentally. The matrix V provides a full
characterization of the detection process, including finite
resolutions and biases. It should be noticed that Eq. (1) can
be rewritten as PVðnjtÞ ¼ Tr½ρ̂ðtÞΠ̂n�, in terms of a POVM
set fΠ̂ng, where

Π̂n ¼
Xþ∞

m¼0

Vn;mjmihmj: ð2Þ

V being positive semidefinite guarantees that Π̂n ≥ 0, while
the condition

P
n Vn;m ¼ 1 for all m guarantees the

completeness relation
P

n Π̂n ¼ 1.

Our QDT protocol consists of finding the coefficients ρN ,
Vn;m, and ΩR that minimize a cost function (see details in
the Supplemental Material [53]).
In Fig. 2 we compare the experimental histograms (bars)

with the probabilities derived from the QDT (orange
circles), namely Eq. (1) with V, ρN , and ΩR calculated
using the minimization algorithm. The agreement is excel-
lent, as the obtained probability distribution PVðnjtjÞ
achieves a very high fidelity with PexpðnjtjÞ, for all tj
(notice that the iterative optimization algorithm is stopped
when C ¼ 0.01, which is a value close to saturation [53]).
The histograms are consistent with that calculated with a
binomial distribution (green squares). The latter assumes a
Gaussian distribution of the total number of atoms with
measured mean and standard deviation, ideal Rabi transfer,
and the convolution with a binomial distribution with a
mean number of 0.27 atoms to account for the unwanted
detection of background atoms. The mean number of atoms
as a function of time,

P
n PVðn; tÞn for the reconstructed V,

ρN , and ΩR interpolates well the detection events as shown
in Fig. 2(a). The Rabi frequency extracted from the
tomographic reconstruction ΩR ¼ 8.2� 0.2 kHz agrees
with the result of a sinusoidal fit to the data.
In Fig. 3 we show the results of our joint detection and

state reconstruction. For most values ofm, the weights Vn;m
[Fig. 3(a)] concentrate around the diagonal n ¼ m, where
they reach their maximal value. In panel (b) we show Vn;m

as a function of n and for the specific values m ¼ 0 and 5,
the histograms are cuts of the plot of panel (a). For m≳ 20,
the reconstructed Vn;m spreads away from the diagonal.
Here, the QDT becomes uncertain because the recorded
probability distributions do not overlap sufficiently (here
for n≳ 20) and the optimization method is affected by
overfitting of the data [58]. To recognize the overfitting
effect, we have performed a “learning test”; see Ref. [53],

FIG. 2. (a) Mean number of atoms detected in j1; 0i in dependence of the MW pulse duration. Each data point (blue triangle)
corresponds to an individual atom number distribution. Those are exemplarily shown in the histograms in (b)–(e) for MW pulses ranging
from t ¼ 0 μs to 28 μs. The ideal binomial distributions accounting for the detection offset and the atom number fluctuations are
illustrated in the cyan rectangles. The solid orange line shows the Rabi oscillation with parameters derived from the state reconstruction
and the orange circles show the results obtained from the QDT algorithm (see text).
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in which the experimental histogram at time tj is compared
with the reconstructed PVðnjtjÞ, where the coefficients ΩR,
ρ̂, and V are calculated from the minimization algorithm
using all of the experimental data except those at time tj.
In this case, we observe a fidelity between PVðnjtjÞ
and PexpðnjtjÞ above 99% for times tj up to 18.48 μs [53].
In the future, a QDT at larger atom numbers can
be obtained by taking more histograms with larger sta-
tistics. In panel (c) we show the reconstructed elements ρN
as a function of the number of particles. As we see, the
reconstructed diagonal state has approximately a Gaussian
shape with mean N̄ ¼ 35.4 and root mean square error
ΔN̂ ¼ 6.4 ≈ N̄1=2.
For m≲ 20, Vn;m is strongly peaked around n ¼ m. It is

thus convenient to calculate Pðn −mÞ ¼ P
m Vn−m;mPm,

giving the reconstructed probability that n −m particles
are detected if m particles hit the detector. Here, Pm ¼P

j PidðmjtjÞ is the overall probability that m particles hit
the detector; it takes into account the most likely detection
events and is almost negligible for m≳ 20. For a noiseless
detector Pðn −mÞ is a delta peak at n ¼ m, regardless of
the Pm distribution. In our case, Pðn −mÞ is still strongly
peaked at n ¼ m, with an overall probability of about 70%;
see Fig. 3(d). It is remarkable that the recorded broad
distributions, which include the effect of number counting
noise, are so identical to the theoretically expected dis-
tributions, that the QDT unveils the desired high-fidelity
counting capability. The slight asymmetry of the distribu-
tion Vn−m reflects the unwanted recapture of atoms
described above, which biases Vn−m to positive values of
n −m. By calculating the variance of the Pðn −mÞ dis-
tribution for n ≤ m (thus not affected by the atom

recapture) we can extract a detection sensitivity
σ ¼ 0.4� 0.02. This counting uncertainty is larger than
the uncertainty obtained from Fig. 1, because the finite
number of measurements additionally deteriorates
the QDT.
As shown in Eq. (2), accessing the matrix V allows us

to characterize the POVM elements Π̂n. For instance,
in Fig. 3(d), we plot the Wigner distribution of the
reconstructed POVM operators Π̂n [59]. For n ¼ 0 the
Wigner function is positive, as expected, corresponding to
the detection of vacuum. On the contrary, for n ≥ 1, the
Wigner functions Wnðq; pÞ have negative values,
despite the presence of off-diagonal contributions that
indicate the absence of a classical analog of these operators.
To emphasize the fundamental quantum nature of
our detection we notice that a POVM with negative
Wigner function is necessary to prove Bell’s nonlocality
with Gaussian states (which have positive Wigner distri-
butions) [44,60].
Measuring the atom number in a single level, as

demonstrated in our experiment, allows us to surpass the
SQL of phase sensitivity in a Ramsey interferometer when
using squeezed states. Notice that a single-output-detection
Ramsey scheme is analogous to a Michelson-Morley
interferometer [61]. The latter is currently exploited in
optical gravitational wave detectors, where the SQL has
been overcome in prototypes exploiting squeezed-vacuum
light [62–65]. The scheme is characterized by a strong
asymmetry of output intensity, with most of the particles
exiting the undetected mode b. At the optimal value
of the interferometer phase shift θ, we predict a phase
uncertainty [53]

FIG. 3. (a) Reconstructed stochastic map Vn;m (linear color scale) as a function of n and m. The highest weight is concentrated along
the diagonal n ¼ m. (b) Vn;m as a function of n and form ¼ 0 andm ¼ 5. (c) Coefficients ρN of the reconstructed state (orange line with
uncertainty shade, see text). The blue triangles show the experimentally obtained state in j1; 0i after a 56 μs MW pulse. (d) Pðn −mÞ as
a function of n −m (squares). The black line is a Gaussian fit to the data for n ≤ m. (e) Wigner function of the POVM operator Π̂0 and
Π̂5, in the ðx; pÞ phase space. Negative Wigner values are observed for Π̂n≥1.
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ðΔθÞ2 ¼ ξ2R
N̄

−
Cz þ 2Vz

2hĴzi2
þ

ffiffiffiffiffiffiffiffi
−Cz

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vz þ VN þ Cz

p
ffiffiffi
2

p hĴzi2
; ð3Þ

where ξ2R ¼ N̄Vx=hĴzi2 is the Wineland spin-squeezing
parameter [3,66]. Here, Vx;z ¼ ðΔĴx;zÞ2 ¼ hĴ2x;zi − hĴx;zi2
and VN ¼ ðΔN̂=2Þ2 are variances, Cz ¼ hĴzN̂i − hĴzihN̂i is
the covariance, N̂ ¼ â†âþ b̂†b̂ is the number of particles
operator, and expectation values are calculated on the probe
state of the interferometer. Equation (3) holds when one
input (mode b, in particular) is much more populated than
the other. Notice that the last two terms in Eq. (3) are not
present when measuring both output ports of the interfero-
meter [3,66] and they explicitly depend on the fluctuations
of the total number of particles. In particular, for a super-
position of coherent spin states with hĴzi ¼ −N̄=2, the last
two terms in Eq. (3) vanish and we recover the SQL at the
optimal working point θ ¼ 0. For moderate squeezing,
ξ2R ≲ 1, the first term in Eq. (3) still dominates and we find
ðΔθÞ2 ≈ ξ2R=N̄, showing the possibility to achieve sub-SQL
sensitivities. Finally, the last two terms in Eq. (3) become
relevant for highly spin-squeezed states and thus limit the
sensitivity gain due to squeezing. Using a superposition of
Gaussian spin-squeezed states, and optimizing the squeez-
ing parameter, we obtain a scaling ðΔθÞ2 ∝ N̄−5=4 [53].
This corresponds to 1.3 dB sensitivity enhancement over
the SQL for N̄ ≈ 36, as in our experiment, and can be
pushed up to 5 (9) dB when increasing the mean atom
number and detecting about 100 (1000) atoms in a single
output. As a final remark, we have recently observed
that our system can detect up to 700 atoms with single-
atom resolution, similar to the reported 1000 atoms
in Ref. [40].
In summary, we have employed a number-resolving

detector to analyze the dynamics of a coherent spin state
derived from an atomic BEC. We have characterized the
detection process by the simultaneous reconstruction of the
diagonal quantum state and the detector’s POVM operators.
The latter are characterized by negative Wigner functions,
thus unveiling the inherent quantum nature of the detector.
In the future, the presented detector and the developed
QDT techniques will be directly extended to entangled
many-body states, promising the detection of entangle-
ment with unprecedented fidelity in the regime of up to
100 atoms.
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