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We study fluctuating field models with spontaneously emerging dynamical phases. We consider two
typical transition scenarios associated with parity-time symmetry breaking: oscillatory instabilities and
critical exceptional points. An analytical investigation of the low-noise regime reveals a drastic increase of
the mesoscopic entropy production toward the transitions. For an illustrative model of two nonreciprocally
coupled Cahn-Hilliard fields, we find physical interpretations in terms of actively propelled interfaces and a
coupling of eigenmodes of the linearized dynamics near the critical exceptional point.

DOI: 10.1103/PhysRevLett.131.258302

When Einstein’s paper on Brownian motion appeared, he
received a critical letter from Röntgen [1] who reiterated the
historically widespread concern that such “motion from
heat” would violate the second law. He failed to understand
that Einstein had just made precise the centuries-old notion
of heat being but a name for the incessant randommotion of
the molecular constituents of all macroscopic matter [2].
In fact, these thermal fluctuations are a manifestation of
conservation, not production, of energy and entropy, accord-
ing to the fluctuation-dissipation theorem [3]. However, this
cornerstone of modern equilibrium statistical mechanics is
lost far from equilibrium, where it becomes a central task to
understand whether, when, and why mesoscopic fluctua-
tions produce entropy. With regard to biological systems,
this literally becomes a question of “life and death.”
Afundamental property of any thermal equilibrium is time-

reversal symmetry. Its breaking, in turn, is associated with a
production of entropy and dissipative dynamics. Notably, on
the coarse-grained scale, however, only part of the full entropy
production is generally perceptible. A versatile measure to
quantify time-reversal symmetry breaking (TRSB) is then the
log-ratio of probabilities for forward and backward paths of
the coarse-grained dynamics [4–7]. This so-called (infor-
matic) entropy production rate S and related measures have
recently been studied for a variety of systems; from single or
few particle models [6], over nonequilibrium field theories of
active matter [8–12], to experimental studies on multiscale
biological systems [13–15].
In this Letter, we explore how TRSB of mesocale

fluctuations in many-body systems informs us about

incipient pattern formation. Specifically, we address the
TRSB associated with the emergence of dynamical mes-
ophases, such as persistent traveling or oscillating patterns
[16–28]. Such states are paradigmatic examples of dis-
sipative structures maintained by permanent dissipative
energy currents [29–32]. Their spontaneous emergence is
an instructive example of how a hidden nonequilibrium
condition and its entropy production may reveal themselves
mesoscopically. For example, for the so-called Brusselator
model, it was recently shown that S may display a
significant increase across the static-dynamic phase tran-
sitions to its oscillating phase [10].
In the following, we consider a broad class of non-

equilibrium field models with conserved dynamics, and
focus on two most common static-dynamic transition
scenarios: oscillatory instabilities [30,33], which are field-
theoretical manifestations of a Hopf bifurcation, and critical
exceptional points (CEP) [34,35], which arise by coales-
cence of a Goldstone and a critical mode. Both these very
dissimilar scenarios can be addressed within the framework
of non-Hermitian field theories [36]. As was described only
recently, CEPs generically occur inmany-body systemswith
nonreciprocal interactions [35,37–41], i.e., interactions that
violate the action-reaction principle [42]. For both scenarios,
we show that the approach from the static toward the
dynamic phase is accompanied by a surge in entropy
production that scales like the susceptibility. Further, we
discover general connections between the parity-time (PT )
symmetry breaking that generically occurs at CEPs
[35,43,44], on the one hand, and the emergence of irrevers-
ible, i.e., TRSB fluctuations, on the other hand. Here, and
more comprehensively in a companion article [45], we
illustrate our general findings with a model of two non-
reciprocally coupled Cahn-Hilliard field equations [37–40].
Field theory and symmetry breaking.—We study hydro-

dynamic models of the following structure:
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ϕ̇i ¼ −∇ · Ji; Ji ¼ −∇μi þ
ffiffiffiffiffi
2ϵ

p
Λi; ð1Þ

with N scalar field components ϕiðr; tÞ, i ¼ 1;…; N,
representing conserved order parameters, such as the
species number densities, of an active many-body system
and their currents Jiðr; tÞ [41,46]. The Gaussian space-time
white noise term

ffiffiffiffiffi
2ϵ

p
Λiðr; tÞ is constructed such that, in the

equilibrium case, where μi½ϕ� derives from a free energy
functional F ½ϕ�, i.e., μi ¼ δF=δϕi, the resulting statistical
field theory would obey a fluctuation-dissipation relation
[3], with ϵ denoting the noise intensity. However, for the
case of a nonequilibrium deterministic current Jdi ½ϕ�≡
−∇μi½ϕ�, which is of interest here, the chemical potential
μi cannot be represented as a gradient. To exclude exter-
nally driven systems, we further assume that Eq. (1) is
invariant with respect to parity inversion, P∶ r ↦ −r.
A first useful insight is that, by construction, the

spontaneous emergence of phases with traveling patterns
in models of the type of Eq. (1) is always accompanied by a
breaking of PT symmetry. This can be seen as follows. In a
phase with traveling patterns, the zero-noise limit (ϵ → 0)
of Eq. (1) has solutions of the form ϕ�

i ðr; tÞ≡ φiðr − vtÞ.
Then, the P invariance of Eq. (1) implies that φ0

iðrþ vtÞ,
with φ0

iðxÞ ¼ PφiðxÞ¼ φið−xÞ is also a solution; which
can as well be expressed as φ0

iðrþ vtÞ ¼ T φ0
iðr − vtÞ, with

T the time-inversion operator. Therefore, the PT operation
applied to any given traveling pattern solution of Eq. (1)
yields another solution. Now, it is clear that, on the one
hand, a parity symmetric pattern (i.e., φ0 ¼ φ) can occur
only for v ¼ 0, and that, on the other hand, spontaneously
emerging dynamical solutions φ with v ≠ 0 automatically
cease to be PT eigenfunctions. Note that the emergence of
PT -broken dynamical phases is not specific to field models
of the type of Eq. (1) but observed in a much wider context,
comprising polar swarm models [11,35], directional solidi-
fication [47], or driven interfaces [48,49].
Irreversibility.—To study irreversibility, we employ a

framework [8,9] that defines the entropy production
s½ϕ; 0; T� along a trajectory fϕt∈ ½0;T�g as the log ratio of
forward and backward path probabilities (see Ref. [36] for
details). The average rate of entropy production, S ¼
limh→0hs½ϕ; t; tþ h�=hi, serves as a measure of the break-
ing of detailed balance and of time-reversal symmetry, at
time t, where h:i denotes the noise average. A main result of
Ref. [9] was that it can, in the steady state, be expressed as
the volume integral S ¼ −ϵ−1

P
i

R
V drhϕ̇iμii, which is

understood to be UV regularized. By employing the Itô
calculus of functionals [50], we derive, as a central result of
the companion paper [36], the more explicit form

S ¼
Z
V
dr

P
ihjJdi j2i
ϵ

þ
Z
V
dr
X
i

�
δ

δϕi
∇ · Jdi

�
: ð2Þ

It yields S based on the single time probability distribution
of ϕ alone, which is particularly useful to study phase
transitions.
We now consider the linear stability of the zero-noise

solutions ϕ� of our dynamical system, i.e., the eigensystem
of the Jacobian ðJ ϕ�Þij ¼ −δð∇ · Jdi Þ=δϕ�

j , represented in a
Fourier basis. A mode (eigenvector) becomes unstable
when the real part of its eigenvalues vanishes. Because
of the parity symmetry of Eq. (1), J ϕ� is real. Crucially, we
allow J ϕ� to be non-Hermitian, thereby capturing a wide
variety of nonequilibrium conditions [35,51]. A common
route from a (mesoscopically) static state to a dynamical
state is via oscillatory instabilities. They occur through a
pair of complex conjugated eigenmodes of J ϕ� that
become unstable and whose eigenvalues (here denoted
by λ�) have nonvanishing imaginary parts. In contrast, the
alternative scenario of a CEP is not primarily characterized
by the properties of the eigenvalues of J ϕ�, but by the fact
that the modes that loose stability in the course of the
transition align. In the following, we assume that a
transition involving only two modes ê0, ê1 with eigenvalues
λ0 and λ1. If one of them is a Goldstone mode of a broken
continuous symmetry (such as space translation invariance
or OðNÞ symmetry [52]) so that λ0 ¼ 0 for ê0, the CEP
leads into a dynamical phase, which dynamically restores
the continuous symmetry associated with this Goldstone
mode [35,36].
Using Eq. (2), we deduce general characteristics of the

entropy production rate S in the vicinity of the transitions.
Thereby, the limit S� ≡ limϵ→0S is particularly informa-
tive, revealing the leading order contribution to TRSB in ϵ
which dominates the entire low noise regime and has
universal (model-independent) character. Our first general
finding is that in static phases with non-Hermitian dynam-
ics, S� is generally of order ϵ0, i.e., they exhibit TRSB even
for arbitrarily low noise intensity. Near oscillatory insta-
bilities of monochromatic modes of wavelength 2π=jqkj, S�
behaves like

S� ∼ jqkj−2jImλ�j2χ; as Reλ� → 0; ð3Þ

where χ ≡ limϵ→0ϵ
−1P

i

R
V drhjϕi − ϕ�

i j2i is the system’s
static susceptibility, which scales like jReλ�j−1, close to the
transition. The proof and the general expression is pre-
sented in Ref. [36]. Similarly, for the CEP, we find

S� ∝ χ ∝ λ−11 ; as λ1 → 0: ð4Þ

Here, the most notable insight is that, in any case, we can
identify a component Jd0 ≡ P̂0Jd, of the deterministic
current along ê0 as the primary source of irreversibi-
lity [53], so that S� is dominated by

R
V drhjJd0j2i=ϵ. This

current is generated by a one-way coupling from damped
modes to the Goldstone mode, which entails a giant noise
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amplification in the latter [36]. From Eqs. (3), (4), we
conclude that, for both types of transitions, S is determined
by the inverse of the real part of the eigenvalue that
becomes unstable across the transition. Thus, the static
phases exhibit, close to the transitions, massively growing
(and for ϵ → 0 diverging) irreversibility, despite their lack
of systematic transport, and despite their seemingly equi-
libriumlike character. In contrast, across conventional
critical points (and generally transitions that are accom-
panied by the sign change of a single real eigenvalue), S
remains regular, despite diverging χ [36].
Within the dynamical phase itself, the small-noise

expansion [54] of Eq. (2) with respect to ϕ� yields [36]

S ¼ ϵ−1
X
i

Z
V
drjJdi ðϕ�Þj2 þOðϵ0Þ: ð5Þ

Since the deterministic current is not sensitive to ϵ, S ∼ ϵ−1

to leading order. If the dynamical phase admits a traveling
pattern ϕ�

i ðr; tÞ≡ φiðr − vtÞ, Eq. (5) takes the more explicit
form S ¼ ϵ−1jvj2Pi

R
V drjφij2 þOðϵ0Þ, revealing that S

originates from the hydrodynamic mesoscopic mass
fluxes vjφij.
Illustrative example.—To illustrate our general findings,

we consider a concrete model of the type of Eq. (1),
namely, a stochastic version of the nonreciprocal Cahn-
Hilliard model [37–40]. It is simple enough to be analyti-
cally traceable, while still exhibiting a dynamical phase,
which is accesible via a CEP and an oscillatory instability.
The dynamical equations for the two-component field ϕ ¼
ðϕA;ϕBÞT read

ϕ̇A ¼ ∇½ðαþ ϕ2
A − γ∇2Þ∇ϕA þ ðκ − δÞ∇ϕB þ

ffiffiffiffiffi
2ϵ

p
ΛA�;

ϕ̇B ¼ ∇½β∇ϕB þ ðκ þ δÞ∇ϕA þ
ffiffiffiffiffi
2ϵ

p
ΛB�: ð6Þ

The nonreciprocal coupling δ between ϕA and ϕB ensures
that the equations cannot be derived from a scalar potential
and represent a non-Hermitian, nonequilibrium model. We
study the dynamics on the one-dimensional domain ½0; 2π�
with periodic boundary conditions, where the emergence of
a dynamical phase itself, and the general features of the
phase diagram, do not depend on the system size. The
noise-free (ϵ ¼ 0) case of Eq. (6) was shown to exhibit
three distinct phases [37]: a homogeneous phase (ϕ�

A;B ¼ 0)
for small negative α and two inhomogeneous “demixed”
phases for large negative α. The approximate solution in
terms of the dominant first Fourier mode ϕ1;�

A;Bðr; tÞ ¼
A1;�

A;B cos½rþ θ1;�A;BðtÞ� amounts to a static demixed phase

for δ < δc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ κ2

p
, when θ̇1;�A;BðtÞ ¼ 0, and to a trav-

eling-wave phase for δ > δc, when θ̇1;�A;BðtÞ ¼ v¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − δ2c

p
, with both signs of the propagation velocity

v being equally likely. The transition from the homo-
geneous to the traveling-wave state is through an

oscillatory instability, while the (secondary) phase transi-
tion from the static-demixed state to the traveling-wave
state is via a CEP. We simulated Eq. (6) using a Euler-
Maruyama algorithm with finite difference gradients,
where the domain was discretized by equally spaced mesh
points. For more details about the analytical and numerical
treatment, we refer to our companion article [45]. Beyond
the general Eqs. (3)–(5), it confirms that the entropy
production scales like ∼ϵ0 in the static (homogeneous
and demixed) phases, with singularities of S� at the
transitions to the traveling-wave phase, and diverging S�
in the traveling-wave state itself.
In the remainder, we exploit the explicit model, Eq. (6),

to provide a physical interpretation of our general findings.
In particular, we reveal which physical mechanism gives
rise to the entropy production (and ultimately its diver-
gence), as the transition is approached.
Let us first consider the dynamical phase itself. The

sublinear scaling of S in ϵ, Eq. (5), indicates that the
dynamical phase exhibits a macroscopic arrow of time.
Recalling its definition in terms of path probabilities, a
divergent S� means that, upon observation of an (arbitrarily
short) realization of the dynamics, one can be 100% sure in
which direction time evolves. Where does this certainty
come from? The sign of v is spontaneously determined by
the initial condition and noise, only. Thus, the mere
propagation of the wave alone cannot introduce an arrow
of time. However, closer inspection of the solutions of
Eq. (6) shows that the propagation velocity v is aligned
with a characteristic phase shift hΔθπi ≠ 0, with Δθπ≡
θ1A − ðθ1B þ πÞ. The maxima of ϕB always “lag behind” the
maxima of ϕA, as shown in Fig. 1(b). The alignment of v
with hΔθπimanifestly breaksPT symmetry and introduces
the macroscopic arrow of time.

FIG. 1. Transition to a dynamical phase via a CEP. (a) Entropy
production rate near the transition point δc from a static demixed
to a traveling-wave phase in model Eq. (6) (α ¼ −0.07,
γ ¼ 0.015, κ ¼ 0.01, β ¼ 0.05), see Ref. [45] for simulation
details. The inset shows a magnification. (b) Traveling-wave
solution of Eq. (6) and its image under a parity transformation P
(which yields an independent solution). The characteristic phase
shift Δθπ is always aligned with the propagation velocity v
(indicated by arrows).
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Next, we turn to the static phases of Eqs. (6) and the
unbounded increase of S� toward the static-dynamic
transitions predicted by Eqs. (3) and (4). A careful
decomposition of the phase and amplitude fluctuations
of ϕA=B in the static-demixed phase yields an interesting
observation: close to the CEP, the fluctuating collective
motion of the interfaces between the demixing profiles,
represented by θ1A;BðtÞ, produces most of the entropy [45].
As we show here, this entropy-generating interface motion
is congruent to the irreversible motion of an “active
particle” or microswimmer and results from systematic
activations of the Goldstone mode. Formally, this can be
seen as follows. Within the low noise regime, θ1A;BðtÞ can
approximately be separated from higher modes, resulting in
the closed equations of motion [45]

θ̇1ðtÞ ¼ A · θ1 þ
ffiffiffiffiffiffiffiffiffiffi
ϵ=2π

p
ξ; ð7Þ

with θ1 ¼ ðθ1A; θ̃1BÞT , θ̃1B ¼ θ1B þ π, and hξiðtÞ; ξjðt0Þi ¼
ð2=A�

i Þ2δi;jδðt − t0Þ, i; j∈ fA;Bg, and

A ¼ −
� ðκ2 − δ2Þ=β −ðκ2 − δ2Þ=β

−β β

�
: ð8Þ

One eigenvalue of the dynamical operatorA is strictly zero,
λ0 ¼ 0, reflecting the native continuous translational sym-
metry of the model in Eq. (6), which is spontaneously
broken in the static-demixed phase (giving rise to a Gold-
stone mode). The other eigenvalue is λ1 ¼ −ðδ2c − δ2Þ=β.
Now, expressing the phase dynamics (7), (8) in the “center-
of-mass” frame, by applying the coordinate transformation
θc ≡ ðΓAθ

1
A þ ΓBθ̃

1
BÞ=Γ̄, Δθ̃π ≡ ffiffiffiffiffiffiffiffiffiffiffi

ΓAΓB
p

Γ̄−1Δθπ , with
ΓA;B ≡ R

2π
0 drjϕ1;�

A;BðrÞj2, Γ̄ ¼ ΓA þ ΓB, yields

∂t

�
θc

Δθ̃π

�
¼

�
0 2δ

0 λ1

��
θc

Δθ̃π

�
þ

ffiffiffiffiffiffiffiffiffiffi
2ϵ=Γ̄

q
ξ̃; ð9Þ

with hξ̃μξ̃νi ¼ δμνδðt − t0Þ. It reveals that, for jδj > 0, θc
performs a persistent random walk “propelled” by the

fluctuating phase shift Δθπ, in striking analogy to an active
particle, with propulsion velocity va ≡ 2δΔθ̃π in the active
Ornstein-Uhlenbeck model [55,56]. The persistence time
tp ¼ 1=jλ1j and hjvaj2i ¼ 4δ2ϵ=ðΓ̄jλ1jÞ are controlled by
the inverse eigenvalue λ−11 of the dynamical operator A,
which vanishes at the transition. This means that the
interface between ϕA and ϕB fluctuates like the path of
a microswimmer, which is, by itself, indicative of TRSB
[57]. Indeed, this is visually evident from the exact
numerical kymographs in Fig. 2(b). To obtain a quantitative
comparison with the interface dynamics of equilibrium
demixing, we compute from Eq. (9) the mean squared
displacement (MSD) of θc [58], and find

MSDðθcÞ ¼
8<
:

ϵ
Γ̄

�
tþ δ2

2λ1
t2
�
; t ≪ tp

ϵ
Γ̄

�
1þ δ2

λ2
1

�
t; t ≫ tp

: ð10Þ

Clearly, the “activity” for jδj > 0 is revealed by a ballistic
intermediate regime and a strongly enhanced late-time
diffusion coefficient in the vicinity of the transition
(λ1 → 0). The predictions of our approximate solution
are nicely confirmed by the numerical data presented in
Fig. 2(a) showing the MSD of the interface dynamics
obtained directly from Eq. (6). The “active fluctuations” of
the interface dynamics in the static demixed phase re-
present a concrete manifestation of TRSB on timescales
comparable to the persistence time—in the same manner as
it does for an active swimmer (note that here both fields
ϕA;B are even under time reversal [60]). As can immediately
be gleaned from Eq. (9), this TRSB yields a considerable
fraction S�

θc
¼ Γ̄hjvaj2i≲ S� of the total entropy produc-

tion. It is generated by the irreversible mesoscopic current
∝ va, pointing along the Goldstone mode and originating
from the dissipative coherent motion of both demixing
profiles, represented by θc. As the transition to the
dynamical phase is approached (δ → δc), va and tp increase
unboundedly, resulting in an unbounded increase of S�.
Importantly, the persistent motion of θc in Eq. (9) is always

FIG. 2. Dynamics of the fluctuating Cahn-Hilliard model, Eq. (6), for ϵ ¼ 2.5 × 10−5 in the static phases: (a) Kymographs of the
concentration field ϕA in the static-demixed phase (α ¼ −0.07), left: for the reciprocal equilibrium case (δ ¼ 0); right: close to the phase
transition (δ ¼ 0.92δc ¼ 0.047). (b) The corresponding MSD of the center-of-mass variable θc. The ballistic regime (∝ t2) signals
persistent motion of the mean phase and the interfaces. (c) Kymographs of ϕA in the mixed phase, left: for the reciprocal case (δ ¼ 0,
α ¼ −0.013); right: close to the oscillatory instability (δ ¼ 0.06, α ¼ −0.063).
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oriented toward the phase shift Δθπ (which has zero mean,
hΔθπi ¼ 0, contrasting the permanently PT broken trav-
eling-wave state), see Fig. 1(b). We emphasize that such
one-way coupling between the damped modes (here Δθπ)
and a Goldstone mode (here θc) that does not vanish at the
transition is a hallmark of CEPs and only possible for non-
Hermitian dynamical operators [36]. It can be understood
as a maximum violation of detailed balance. In the vicintiy
of the CEP, this generically leads to a diversion and
amplification of fluctuations into the direction of the
Goldstone mode, as was recently described in the context
of quantum systems [34]. As we further elaborate for
general field models of the type of Eq. (6) in Ref. [36], this
very mechanism is deeply connected with the origin of PT
symmetry breaking at the CEP.
Lastly, also for the divergence of S� at the oscillatory

instability, the nonreciprocal Cahn-Hilliard model provides
a rather intuitive interpretation. Noting that jImλ�j corre-
sponds to the frequency of the limit cycle, we find that S
signals the presence of cyclic currents in the homogeneous
phase. Their amplitude is entirely due to transient fluctua-
tions, but eventually becomes systematically positive as χ
diverges at the transition. In our example, this mechanism
creates temporarily stable traveling waves, which are
plainly obvious in the graphical representation of our
simulation data in Fig. 2(c).
Conclusions.—We have studied the irreversible fluctua-

tions of coarse-grained hydrodynamic field models close to
the onset of dynamical phases. Clearly, the dynamical
phase itself is a particularly drastic manifestation of TRSB.
But our results show that, even before entering it, the
nonequilibrium character of the dynamics reveals itself
through transient TRSB fluctuations around a seemingly
equilibriumlike average behavior. This observation could
be of interest for a nonequilibrium classification of living
matter [15]. Focusing on two paradigmatic transition
scenarios, we uncovered that the fluctuations near PT -
breaking phase transitions not only inflate, as is in
equilibrium critical phenomena, but also develop an
asymptotically increasing time-reversal asymmetry and
associated surging entropy production. In the low noise
regime, S scales precisely as the susceptibility, or equiv-
alently, as the inverse of the eigenvalue of the mode that
becomes unstable across the transition. Moreover, we have
drawn general connections between the PT -symmetry
breaking and TRSB of the fluctuations, at a CEP. We were
able to attribute the striking simultaneous presence of two
completely different forms of symmetry breaking (PT and
TRSB) to a common origin, an active amplification of
thermal noise into irreversible fluctuations. Our analysis of
a model consisting of two nonreciprocally coupled noisy
Cahn-Hilliard fields illustrates our general findings and
provides instructive physical interpretations for the TRSB
in terms of a peculiar phenomenology of “active interface
dynamics.” In future studies, it would be interesting to

reconsider our findings from the perspective of “informa-
tion thermodynamics,” as recently pioneered for Turing
patterns [61], and from the perspective of the renormaliza-
tion group, as in Refs. [62–64]. Further, it would be
worthwhile to investigate the spontaneously emerging mass
current in the context of thermodynamics uncertainty
relations [65–67].
Independent, consistent results for TRSB in the nonre-

ciprocal Cahn-Hilliard model were reported in Ref. [68].
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