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Entropic self-assembly is governed by the shape of the constituent particles, yet a priori prediction of
crystal structures from particle shape alone is nontrivial for anything but the simplest of space-filling
shapes. At the same time, most polyhedra are not space filling due to geometric constraints, but these
constraints can be relaxed or even eliminated by sufficiently curving space. We show using Monte Carlo
simulations that the majority of hard Platonic solids self-assemble entropically into space-filling crystals
when constrained to the surface volume of a 3-sphere. As we gradually decrease curvature to “flatten”
space and compare the local morphologies of crystals assembling in curved and flat space, we show that the
Euclidean assemblies can be categorized as either remnants of tessellations in curved space (tetrahedra and
dodecahedra) or nontessellation-based assemblies caused by large-scale geometric frustration (octahedra
and icosahedra).
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Introduction.—Particle shape has become an important
design parameter in material science [1–3], colloidal self-
assembly [4–6], and granular matter [7–9]. One example of
the importance of shape is systems of hard particles, which,
due solely to entropy maximization, can self-assemble into
a zoo of different colloidal crystals simply by changing,
even subtly, particle shape [10]. Although methods exist to
inversely design particle shapes likely to self-assemble into
targeted crystalline structures [11–14], it is nontrivial to
predict those structures from particle shape, other than
through molecular simulation. This challenge becomes
apparent even for the simplest polyhedra, the Platonic
solids. Particle shape directly determines both their assem-
blies [10,15]—in which entropy is maximized—and pack-
ings [10]—in which density is maximized. However,
assemblies and packings are the same only for some
Platonic solids and polyhedra in general [16]. Cubes are
one example where the self-assembled simple cubic (sc)
crystal structure and densest packing (a space-filling sc
crystal) coincide [17]. Hard octahedra and icosahedra do
not fill 3D space, but they, too, maximize entropy in
crystals that coincide with their densest packing structures:
a rhombohedral and face-centered cubic (fcc) structure,
respectively [10,18]. However, hard dodecahedra self-
assemble into a 20-particle unit cell β-manganese rotator
crystal [10] with two distinct local particle environments
instead of its densest packing structure, fcc [18]. Likewise,
hard tetrahedra famously form quasicrystals [19,20] with a
myriad of different particle environments instead of the
putative densest packing structure with a unit cell com-
posed of four tetrahedra arranged in a double-dimer

structure [19,21]. Evidently, densest packings, at least in
Euclidean space, cannot serve as indicators to predict self-
assembly [22,23]. But what of curved space?
Polyhedra fail to self-assemble their densest packing

structures when they fail to resolve global geometric
constraints that prevent the polyhedra from maximizing
entropy locally as well as globally [24]. For example,
entropy is maximized for cubes when cube faces are
aligned, a motif consistent with the sc densest packing,
and thus no geometric constraints arise during assembly.
Inspired by studies of Frank-Kasper phases [25–28],
glasses [29–35], tetrahelix sheets [36], and liquid crystal
blue phases [37–40], we investigate in this Letter if and
how hard particle assemblies are related to space-filling
tessellations of curved space. We hypothesize that if we can
find a suitable space with curvature K that permits a shape
to tessellate, then the shape will self-assemble into a crystal
based on the tessellation in that space because the tessellat-
ing arrangement will maximize entropy. By subsequently
flattening the space and monitoring the defects that arise in
the process, we posit that we will gain predictive informa-
tion on the likely structure of the 3D Euclidean assembly.
We first tested our hypothesis by determining if, in

positively curved space, any of the five Platonic solids self-
assemble entropy maximizing, tessellating 4-polytopes
with no global geometric frustration. We performed
hard particle Monte Carlo (HPMC) simulations [see
Supplemental Material (SM) [41] ] and show that tetrahe-
dra, dodecahedra, and octahedra self-assemble into their
corresponding 4-polytopes, each in a differently curved
space. We then simultaneously increased the 3-sphere
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radius R ¼ K−0.5 while keeping the packing fraction
constant, thereby flattening the curved spaces. This tech-
nique geometrically frustrates the assemblies and has
shown to increase the kinetic fragility of glass formers [47].
By comparing the local environments of particles
assembled in curved and in flat space, we show that the
geometric incommensurability, that prevents particles to
form entropically favorable tessellations, manifests itself
in two different ways as we gradually flatten space.
Interestingly, the Euclidean assemblies of tetrahedra and
of dodecahedra still exhibit signs of their 3-sphere tessel-
lations. For crystal structures with multiple local environ-
ments the geometric frustration suffered by the tessellating
assembly as curved space is flattened is resolved by the
appearance of defects, leading to an assembly with free
volume nonuniformly distributed through the structure.
In contrast, we find that the assemblies of octahedra and
of icosahedra have a large curvature mismatch between
the curved spaces they tessellate and Euclidean space, and
thus their 3D assemblies are not related to defect-ridden
tessellations from curved space. Instead, shapes which form
crystals with unique local environments resolve the geo-
metric frustration in Euclidean space by maximizing
entropy uniformly among all the particles, resulting in
colloidal crystals of considerably less complexity than
those assembled by shapes of type 1.
Self-assembly of 4-polytopes.—The family of regular

4-polytopes can be identified as tessellations of the 3D
positively curved volume of a 3-sphere. We performed
HPMC simulations of the self-assembly of N ¼ 600

tetrahedra, N ¼ 120 octahedra, and N ¼ 24 dodecahedra
with circumsphere diameter σ confined to the 3-sphere into
4-polytopes corresponding to the 600-cell consisting of 600
tetrahedral cells, the 120-cell with 120 dodecahedral cells,
and the 24-cell with 24 octahedral cells, respectively. There
exist even more tessellations of the three Platonic solids in
both hyperbolic and spherical space, but these three
tessellations deviate in curvature the least from flat
Euclidean space, which makes them the strongest candi-
dates for a comparison with self-assembled 3D structures.
Because cubes already tessellate Euclidean space, and
icosahedral tessellations exist only in hyperbolic space,
we do not simulate these two shapes [48]. All self-assembly
simulations were carried out at constant pressure and
constant N. Figure 1(d) shows equations of state for all
three shapes. The data indicate a first-order transition from
the disordered fluid phase into a crystalline phase for the
tetrahedron and dodecahedron systems. Although a first-
order transition is not evident in the octahedron data, we
suspect this is simply due to the necessarily small system
size [50,51].
The crystal structures that self-assemble above the

transition pressure (or corresponding density) are quanti-
fied by two different types of radial distribution functions
(RDF); see Figs. 1(b) and 1(c). The RDF gcðrÞ quantifies
spatial correlations between particle centroids, and devel-
ops peaks that coincide with the characteristic geodesic
distances between cells of the ideal 4-polytopes. Similarly,
the RDF gvðrÞ calculated from the polyhedron vertices
develops peaks that fit the dual lattices of the 600-cell

FIG. 1. Self-assembly of 600 hard tetrahedra into the 600-cell (top row), 120 hard dodecahedra into the 120-cell (center row), and 24
hard octahedra into the 24-cell (bottom row) on the 3-sphere. (a) Stereographic projections of the ideal 4-polytopes and the densest
obtained assembled configuration via MC simulations. Particles that are highly deformed by the stereographic projection are outlined by
their edges for better visualization. Normalized radial distribution functions at different densities ρ in regard to the (b) center positions
and (c) vertex positions of the particles. (d) Space curvature vs pressure calculations during the phase transition. (e) Highest densities
obtained from self-assembly simulations at different number of particles N.
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(dual: 120-cell), 120-cell (dual: 600-cell) and 24-cell (self-
dual). Moreover, we observe that during the formation of
the 120-cell, the dodecahedron particles first achieve trans-
lational order before they align their orientations, indicating
a transition from the isotropic phase into a plastic 120-cell
and then into a 120-cell crystal. The existence of the plastic
phase is consistent with earlier numerical studies of hard
spheres that form 120-cell configurations [52].
By further increasing the density in the 24 octahedra and

120 dodecahedra system, the peaks of gcðrÞ and gvðrÞ
narrow into delta functions, indicating space-filling ideal
packings. Also, the stereographic projections of the self-
assembled structures reveal the formation of the tessella-
tions [see Fig. 1(a) herein and Movies 1–3 in SM [41] ]. We
were unable to compress the 600 tetrahedra into the perfect
tiling of the 3-sphere; instead, we observe a 600-cell with
void defects and interstitials at a maximum density
ρ ¼ 0.96.
Defect stabilized 600-cell.—To determine why the per-

fect 600-cell tessellation of tetrahedra does not assemble at
high densities we performed additional simulations with

slightly lower and higher numbers of particles [see
Fig. 1(e)]. Whereas the octahedron and dodecahedron
3-sphere systems are the most densely packed for
the ideal number of particles that correspond to their
4-polytopes, the tetrahedron systems create the lowest
local density for N ¼ 585 when defects are present (see
Movie 4 in SM [41]). Also, the critical pressures at the
phase transition and free energy calculations in Fig. 2
indicate that the 600-cell spherical lattice is stabilized by
impurities at the transition with N ¼ 585. This stabilization
of the crystalline phase via vacancies is similar to the
equilibrium sc phase of hard cubes [17], where cubes form
linear arrays that can slide along each other adding
another entropic contribution and leading to the stabiliza-
tion of the sc crystal via the inclusion of void defects.
Analogously, the 600-cell can be separated into 20 linear
arrays known as tetrahelix loops, indicating a similar
sliding mechanism [53] [see Fig. 2(b)]. While our calcu-
lations in Fig. 2(d) show that a 600-cell with a 5% void
defect concentration minimizes free energy at the phase
transition (ρ ≈ 0.5), they also suggest that the hard
tetrahedron system should eventually eliminate the vacan-
cies at higher densities, like hard cubes do in Euclidean
space. Consequently, our system of hard tetrahedra con-
fined to the 3-sphere does not reach proper equilibrium
beyond ρ > 0.56 but is configurationally trapped instead.
Our compression scheme even when allowing temporary
overlaps [54], therefore, is unable to eliminate defects
integrated into the crystal structure after its initial
assembly, resulting in a defected 600-cell.
Bending into flat space.—To study how assemblies in

Euclidean space resolve geometrical incompatibilities
so that particles can arrange into entropically favored
configurations, we frustrated the 24-, 120-, and 600-cell
structures from curved space into Euclidean space.
Specifically, we increased the number of particles on the
3-sphere, which simultaneously decreases the space cur-
vature K ¼ ð2π2ρN=NÞ2=3 at a constant number density ρN.
As the flattening systems gradually incorporate more
particles, the larger the 3-sphere radius deviates from the
ideal curvature that allows for tessellation. Hence, we
repeated our numerical calculations with Noct ∈ ½26; 480�,
Ndod ∈ ½125; 1000�, and Ntet ∈ ½620; 1000� by running sep-
arate simulations for each N. We quantified the assemblies
locally by calculating a set of Minkowski order parameters
(MOPs) q4, q5, q6, q8, q10, and q12 [55,56] (see SM [41]).
When we slightly increase the number of particles from the
ideal number that can tessellate the 3-sphere perfectly,
local environments are introduced that deviate from their
ideal 4-polytope arrangements in all three systems.
Consequently, the region of typical particle environments
expands in the six-dimensional MOP space, while most
particles keep 4-polytope-like environments (see Fig. 3
herein and Figs. SI1–SI3 in SM).

FIG. 2. (a) Normalized radial distribution functions gcðrÞ at the
highest obtained density for 560, 580, and 600 hard tetrahedra on
the 3-sphere. (b) Stereographic projections of tetrahelix loops
extracted from an ideal 600-cell. (c) Pressure calculations during
the phase transition for different numbers of hard tetrahedra on
the 3-sphere. The inset plot shows the critical densities at the
phase transition. (d) Vacancy concentration with the lowest per-
particle free energy at different packing fractions. We used the
Frenkel-Ladd method (see SM [41]) to calculate the free energy
difference ΔF relative to an Einstein crystal. (e) Free energy
difference at different vacancy concentrations for ρ ¼ 0.5. The
red arrows indicate the relation between (d) and (e).
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For the dodecahedron and tetrahedron systems, this
region of local environments characterized by MOPs
remains consistent even for a large number of added
particles (i.e., considerable flattening) and can also be
identified as the typical environments of their representative
ideal and thermalized self-assembled structures in
Euclidean space: the β-manganese structure for dodecahe-
dra and the quasicrystal for tetrahedra. Moreover, the
development of the local environments with decreasing
K indicates why these systems feature multiple local
particle arrangements in Euclidean space. The unit cell

of the β-manganese crystal lattice, for example, contains 20
atoms with two unique Wyckoff sites 8c and 12d and,
hence, two different local environments. The Wyckoff sites
are located in two different regions within the MOP space.
Remarkably, 8c is in close vicinity to the ideal 120-cell
environment such that some hard dodecahedra in simu-
lations with N ¼ 120 adopt 8c-like environments due to
fluctuations. By assigning each environment during the
flattening process to one of the Wyckoff sites depending on
their distance in MOP space (see Fig. 4), we identify 8c,
with its 12 local neighbors, as inherited from the 3-sphere
tessellation whereas 12d (14 neighbors) is a disclination
integrated into the 120-cell structure. This becomes apparent
by considering that the coordination shell of 12d can be
generated by adding a dislocation line to the coordination
shell of 8c [25,31]. In assemblies with a small number of
added dodecahedra N ∈ ½120; 200� the particles arrange
mostly in an 8c-like local environment with only a few
particles accumulating around the 12d environment. By
flattening space further, the number of 12d-like environ-
ments increases, which is in accordance with the addition of
more disclination lines. The ratio between 8c- and 12d-like
particles converges toward a value between the ideal ratio of
sites in a β-manganese crystal ðN8c=NÞ ¼ ð8=20Þ ¼ 0.4
and a ratio obtained from a self-assembled β-manganese
crystal ðN8c=NÞ ¼ 0.31� 0.02.
Similarly, the multiple environments in the quasicrystal

of hard tetrahedra can be interpreted as defects. Even by
comparing the MOPs between a quasicrystal and the self-
assembled 600-cell structure with void defects we detect
that the local environments match (see Fig. SI4 [41]).
By flattening space, more and more particles obtain the
quasicrystalline environments. We, therefore, argue that the
quasicrystal is a result of the entropic gain to integrate
different defects into the 600-cell that allows for the
development of a variety of different local environments
that we interpret as vacancies and interstitials in the
600-cell.

FIG. 3. Minkowski order parameter of hard (a) tetrahedron
(q4=q5), (b) dodecahedron (q6=q8), and (c) octahedron (q10=q12)
assemblies on the 3-sphere at ρ ¼ 0.65 with a small (left, red),
medium (center, green), and large (right, blue) degree of flat-
tening into Euclidean space. The curvature K ∝ N−2=3 is regu-
lated by the number of particles N. The remaining set of MOPs
are shown in Figs. SI1–SI3 in SM [41]. Each circle represents a
particle environment obtained from the simulation. The white
outline indicates the region within which 80% of the typical
local particle environments of the self-assembled structures in
Euclidean space lie (β-manganese for dodecahedra with Wyckoff
sites 8c and 12d, quasicrystal for tetrahedra, and rhombohedral
crystals for octahedra). For the tetrahedra we use the ð3; 4; 32; 4Þ
quasicrystal approximant of the dodecagonal quasicrystal as a
reference [19]. (d) Comparison between the MOP of hard
icosahedra in their densest packings (flat space: fcc; hyperbolic
space: icosahedral honeycomb) and a self-assembled fcc structure
in Euclidean space.

FIG. 4. Ratio of hard dodecahedra in assemblies on the
3-sphere with local environments closer to the 8c rather than
the 12d Wyckoff site of the ideal β-manganese structure in MOP
space. The same data are used as in Fig. 3(b). The orange dotted
line refers to the ideal ratio of 8c particles in the β-manganese
crystal ðN8c=NÞideal ¼ 0.4. The red dashed line refers to the
obtained ratio when we apply the same calculations to a self-
assembled β-manganese structure of hard dodecahedra in Euclid-
ean space ðN8c=NÞsa ¼ 0.31� 0.02.
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However, hard octahedron systems with many added
particles Noct > 50 paint a different picture. Here, the
octahedron assembly must overcome a larger curvature
difference to flatten the 24-cell (ΔK24 ≈ 1.571σ−2) com-
pared to the 120-cell (ΔK120 ≈ 0.776σ−2) or 600-cell
(ΔK600 ≈ 0.764σ−2). Therefore, the strategy of entropy
compartmentalization [57,58] by adding defects to the
24-cell eventually becomes less efficient than maximizing
entropy by forming crystals with only one type of local
environment reminiscent of the rhombohedral crystal. The
switch of entropy minimization mechanisms is apparent
in Fig. 3(c) herein and Fig. SI3 in SM [41], where the
octahedra do not adopt local environments close to those
in the 24-cell for large N. This phenomenon draws
similarities to frustration escape in geometrically frustrated
assemblies (GFAs) of deformable particles with open
boundaries [59–62]. Despite not being dominated by
entropy but instead energetic contributions such as particle
deformation, binding between building blocks, and boun-
dary energy terms, GFAs also feature an incompatibility
between the locally preferred order and global constraints.
Similar to the space curvature in our hard particle assem-
blies, the particle shape rigidity in GFAs dictates if it is
energetically more favorable for the system to accumulate
stresses without losing locally preferred order (rigid self-
limiting regime) or to escape the frustration by deforming
the particles (soft bulk regime). Hence, the self-assembled
structure of hard octahedra is not based on a 3-sphere
tessellation. Instead, the assembly is more related to the
densest packing in Euclidean space, which indicates how
to accommodate global and local geometric frustration
uniformly.
Although we cannot perform a similar computational

study with icosahedra as its tessellation, the icosahedral
honeycomb (ih), only exists in negatively curved hyper-
bolic three-space, we observe in Fig. 3(d) that the typical
local environments of the self-assembled fcc crystal of
icosahedra in Euclidean space show the same character-
istics as the octahedron system. Within the MOP space the
icosahedra environments sit in a region close to the ideal
fcc but clearly detached from the ideal ih environment.
This and the existence of only one local environment in
the ideal fcc crystal suggest that the occurrence of the
fcc crystal in hard icosahedron systems is also caused by
the large difference in curvature between the ih crystal and
Euclidean space. As in the octahedron system, the geo-
metric frustration is distributed uniformly in Euclidean
space rather than concentrated by adding defects and
introducing additional local environments. Therefore, we
surmise that the fcc phase is not related to the ih
tessellation in hyperbolic space, but rather to the densest
packing in Euclidean space.
Conclusion.—In this Letter, we rationalize the assembly

of complex colloidal crystal structures of hard polyhedra
based on tessellations in curved space. By performing MC

simulations of hard tetrahedra, octahedra, and dodecahedra
on positively curved 3-spheres, we showed that the par-
ticles thermodynamically self-assemble their 4-polytope
tessellations. Hence, the particles adopt their locally opti-
mal configurations if no geometrical restrictions are
present, such as those that occur when they attempt to
crystallize in Euclidean space. Moreover, we observed by
flattening space that equilibrium colloidal crystal structures
in Euclidean space can be separated into two categories.
The first category includes self-assembled structures with
multiple local environments in flat space that can be
understood as remnants of perfect tessellations in curved
space indicating the predictive power of curved tessella-
tions and curved crystal for Euclidean assemblies. As an
example, we traced back the dodecagonal quasicrystal
phase of hard tetrahedra to the 600-cell and its low entropic
cost to implement void defects into the crystal. Likewise,
the β-manganese configuration of hard dodecahedra stems
from the 120-cell, with the two Wyckoff sites of the crystal
identified as a local environment native to the 120-cell
and a defect, respectively. The second category includes
self-assembled Euclidean crystals that do not stem from
tessellations in curved space, such as the rhombohedral
crystal of hard octahedra or the fcc crystal of hard
icosahedra. Their corresponding tessellations require
spaces with considerably larger curvature resulting in a
frustration escape [59–62]. Consequently, these assemblies
adopt a geometric compromise in Euclidean space where
entropy maximization is achieved uniformly through a
characteristic single local environment instead of introduc-
ing defects.
Although we focused on the hard-core limit exclusively

in this study, our findings are also relevant for systems
with enthalpic contributions considering the mathematical
description of Frank-Kapser phases as disclinated 600-
cells [27,28]. Furthermore, it is well established that
altering the features of particle interactions, such as their
softness, changes the stability of competing crystalline
structures [63–66] and affects the glass-forming ability of
packings which corresponds to their capability to resolve
frustration [67,68]. Therefore, introducing a soft repulsion
between the polyhedra, allowing shape deformations with
an associated energy penalty, or tuning interparticle
stresses [61,62] grants the system additional degrees of
freedom to resolve geometric frustration during the space-
flattening process. These modifications can theoretically
broaden and control the curvature window, where assem-
blies based on non-Euclidean crystals minimize free
energy and, for instance, help us identify the Euclidean
remnant of the 24-cell. Hence, our results not only provide
a fundamental theoretical explanation behind the plethora
of existing colloidal crystal structures but also open an
avenue to discover and guide the prediction of new self-
assembly structures that are based on curved crystals and
tessellations.
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