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We present the exact expression for all local conserved quantities of the one-dimensional Hubbard
model. We identify the operator basis constructing the local charges and find that nontrivial coefficients
appear in the higher-order charges. We derive the recursion equation for these coefficients, and some of
them are explicitly given. There are no other local charges independent of those we obtained.
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Introduction.—Quantum integrability and local conser-
vation laws are two sides of the same coin. Quantum
integrable systems are exactly solvable many-body systems
by the Bethe ansatz [1] and have an extensive number of
local conserved quantities fQkgk≥2, which is the founda-
tion of their solvability. Recently, quantum integrable
systems are becoming an arena for the studies of non-
equilibrium quantum dynamics, inspired by their exper-
imental realization with ultracold atoms [2–5], where Qk
play a crucial role: their existence leads to the absence of
thermalization [6–8] and the conjectured longtime steady
state is the generalized Gibbs ensemble [9–11], involving
all local (and also quasilocal) conserved quantities as well as
Hamiltonian [12–16]. The large-scale nonequilibrium behav-
ior is described by generalized hydrodynamics [17,18],
which is based on the local continuity equations of Qk. In
quantum inverse scattering methods [19,20], the existence of
the local conserved quantities is understood from the
commutativity of the transfer matrices ½TðλÞ; TðμÞ� ¼ 0:
Qk is obtained from the expansion of lnTðλÞ in terms of
the spectral parameter λ, and usually, the leading term
Q2 ¼ H is Hamiltonian itself. Another way to calculate
Qk is the use of the boost operator B [21–23] if it exists: local
charges can be calculated recursively by ½B;Qk� ¼ Qkþ1.
Although a procedure to generate the local conserved

quantities Qk has been known, it is still practically difficult
to obtain their expressions. This difficulty lies not only in
the expensive computational cost for higher-order charges
but also in finding a general pattern in the huge amounts
of data that emerge out of this calculation [24]. This
problem has been investigated particularly for the spin-1=2
XYZ chain [25–32] and the one-dimensional Hubbard
model [33–40]. The former case is now deeply understood:
the explicit expressions for the isotropic XXX case are
obtained independently in Refs. [41,42]. For the general
XYZ case, Grabowski and Mathieu found the structure of
Qk and derived the recursion relations to constructQk using
boost operator [24], and recently, its explicit expression
was obtained by Nozawa and Fukai [43] using the
doubling-product notation [44], and for the XXZ case,

independently obtained by Nienhuis and Huijgen using the
Temperley-Lieb algebra [45].
On the other hand, for the one-dimensional Hubbard

model, the structure of the local conserved quantities Qk
remains a mystery. The problem is that there was no
recursive way to construct them [46], unlike the XYZ
case, because of the absence of the boost operator [24,48].
This comes from the fact that the Hubbard model is not
Lorentz invariant due to the separation of spin and charge
excitations with different velocities [49–51]. The first three
nontrivial charges have been found before: Q3 [35,38],
Q4 [52,53], and Q5 [24]. From these expressions,
Grabowski and Mathieu conjectured that Qk is constructed
of products of local conserved densities of spin-1=2 XX
chain [24]. However, what kind of products of the XX
charges are allowed in Qk was unknown.
In this Letter, we reveal the structure of the local

conserved quantities Qk in the one-dimensional Hubbard
model and present their exact expressions. We proveQk is a
linear combination of connected diagrams, a notation for
the particular kind of products of the XX charges. With this
notation, we find the expressions of the higher-order
charges Qk≥6, and nontrivial coefficients appear there.
We derive the recursion equation for these coefficients
of the connected diagrams in Qk. There are no other local
charges independent of our Qk, and any local charges are
written in a linear combination of Qk.
Hamiltonian and notations.—The Hamiltonian of the

one-dimensional Hubbard model is

H ¼ −2
XL
j¼1

X
σ¼↑;↓

�
c†j;σcjþ1;σ þ H:c:

�

þ 4U
XL
j¼1

�
nj;↑ −

1

2

��
nj;↓ −

1

2

�
; ð1Þ

where the periodic boundary condition is imposed and
njσ ≡ c†j;σcj;σ and U is the coupling constant.
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We denote the kth local conserved quantity in terms of
the polynomial of U by

Qk ¼
Xjf
j¼0

UjQj
k; ð2Þ

where jf ¼ k − 1 (k − 2) for even (odd) k and Qj
k is

independent of U. Qk is a linear combination of operators
that act on at most k adjacent sites. We determine Qj

k to
satisfy ½Qk;H� ¼ 0.
We introduce some notations to represent Qk. We define

a unit of þ type starting from jth site by

ð3Þ

where nð> 0Þ is the length of the unit. We define the zero-
length unit by , and define its type as −.
A unit of − type with nonzero length is defined by

[54].
A diagram represents a product of units, denoted by

ΨðiÞ ¼ QlΨ
α¼1 ψ

tα;nα
σα ðjα;iÞ, where ψ t;n

σ ðjÞ is the unit starting
from the jth site with type t, length n, and spin σ, and
jα;i ≡ iþ jα, j1 ¼ 0, jα ≤ jαþ1. jα and σα satisfy if σα ¼
σβðα < βÞ, then j0α < jβ (j0α ≡ jα þ nα) and if jα ¼ jαþ1,
then σα ¼ ↑, σαþ1 ¼ ↓. lΨ is the number of units in ΨðiÞ.
Units in a diagram mutually commute. A diagram ΨðiÞ
has a graphical representation by a two-row sequence:
ψ tα;nα
σα ðjα;iÞ is placed on the upper (lower) row for

σα ¼ ↑ (↓), with jα columns being on its left. Positions
without a unit are filled with “I.” For example, the diagram
ΨðiÞ ¼ ψ−;2

↑ ðiÞψþ;3
↓ ðiþ 1Þψ−;1

↑ ðiþ 4Þ is represented as

ð4Þ

Note that units on the same row are separated by I’s. The

interaction term is written as . A diagram

without a site index denotes the site translation summa-
tion, Ψ ≔

P
L
i¼1 ΨðiÞ.

We define some integers for a diagram Ψ. First, we
define pi by fp1;…; p2lΨg ¼ fj1;…; jlΨ ; j

0
1;…; j0lΨg

where pi ≤ piþ1. Then, we define support by sΨ ≔
jlΨ þ nlΨ þ 1, double by dΨ ≔

PlΨ−1
i¼1 ðp2iþ1 − p2iÞ, gap

number by gΨ ≔
PlΨ−1

i¼1 δiðp2iþ1 − p2iÞ, where δi ¼ 1 for
p2iþ1 ∈ fj1;…; jlΨg, and otherwise 0. sΨ − 1 corresponds
to the total number of columns in the two-row graphical

representation ofΨ. We refer to a column as overlap

(gap). gΨ (dΨ) corresponds to the total number of columns
of gap (gap and overlap). ðs; dÞ diagram is a diagram

satisfying sΨ ¼ s and dΨ ¼ d. We note that sΨ > dΨ ≥ gΨ.
For the diagram of Eq. (4), the integers are
ðsΨ; dΨ; gΨ; lΨÞ ¼ ð6; 1; 0; 3Þ.
Two units in a diagram Ψ, indexed by α and βðα < βÞ,

are connected if σα ≠ σβ and for any γð≠ α; βÞ, either of
j0γ < j0α or jβ < jγ holds. This condition can be categorized
into three cases, as illustrated in Figs. 1(a)–1(c). A con-
nected diagram is a diagram satisfying (i) for any two units
in a diagram, indexed by α and β, there exists a sequence of
indices of unit ðα ¼ γ0; γ1;…; γN; γNþ1 ¼ βÞ, where the
γith and γiþ1th units are connected, and (ii) the type of αth
unit is tα ¼ ð−ÞCα , where Cα is the number of units
connected with it. The diagrams in Figs. 1(a)–1(c) and
Eq. (4) are connected diagrams, and examples of non-
connected diagrams are given in Fig. 1(d). We found that
Qk is a linear combination of connected diagrams.
Structure of Qk.—We show the explicit form of

lower-order charges previously found in terms of

connected diagrams: and

, where ↕ represents the dia-

grams with the upper and lower rows reversed, excluding
those that remain invariant under this operation. Q4 and Q5

are written as

ð5Þ

ð6Þ

where we omit the 12 terms of Q1
5. We newly obtained the

explicit forms of higher-order Qk for k ≥ 6 and found
nontrivial coefficients that are not �1 appear; for example,

FIG. 1. Examples of connections of units (a)–(c), and the
nonconnected diagrams (d). Units on the upper and lower rows of
the diagrams in (a)–(c) are connected. The gaps in (c) [(d)] are
indicated by the teal [orange] shaded area. The diagram on the
bottom right in (d) does not satisfy condition (ii), while the others
do not satisfy (i).
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ð7Þ

We give the explicit forms of Q6, Q7, Q8 as examples of
higher-order Qk in Ref. [55].
The diagrams in Qj

k are classified as ðs; dÞ-connected
diagrams as shown in Figs. 2 and 3, where circles represent
ðs; dÞ-connected diagrams in Qj

k, and crosses represent
diagrams generated by the commutator with the

Hamiltonian H ¼ H0 þ UH1, where and

. The solid arrow in Figs. 2 and 3 indicates the

commutator with H0. The vertical dotted arrow in Fig. 3
indicates the commutator with H1. The diagrams at the
crosses are to be canceled for the conservation law.
We give an example of commutators of units with H0

and H1 [56]:

and . The commutator of connected

diagrams and H also generates a nonconnected diagram;
the details are given in Ref. [55]. We can construct Qj

k
recursively by calculating the cancellation at the crosses in
Fig. 3 from top to bottom.

Exact expressions.—We define list of diagram Ψ,
λΨ ¼ fλ1; λ2;…; λlΨg by λα ¼ p2α − p2α−1 − ηα, where
ηα ¼ 0 for α∈ f1; lΨg and otherwise ηα ¼ 1. λi repres-
ents the length of a sequence of coast, which we

define as consecutive columns of or , as

illustrated:

where λΨ ¼ f2; 1; 3; 2; 2; 3g, and Ψ is the (24,6)-connected
diagram and gΨ ¼ 2 and lΨ ¼ 6. The lengths of the coasts
are indicated by the arrows, and the gap is indicated by the
shaded area.
We show the exact expression of Qk. Q0

k is the ðk; 0Þ

diagram: . Note that Q0
k is the local

charge for the U ¼ 0 case. For Qj
kðj ≥ 1Þ, we obtain the

following result.
Theorem 1.—For j ≥ 1,

Qj
k ¼

X
0≤nþd<⌈k−j

2
⌉;

n;d≥0

Xbj−12 c

m¼0

Xd
g¼0

ð−1Þnþmþg
X

Ψ∈Sk;j;m
n;d;g

Cj;m
n;d ðλΨÞΨ; ð8Þ

where Sk;j;m
n;d;g is the set of ðk − j − 2n − d; dÞ-connected

diagrams Ψ with lΨ ¼ jþ 1 − 2m and gΨ ¼ g.
Cj;m
n;d ðλ1…λlÞ∈Z>0 is invariant under the permutation of

λið2 ≤ i ≤ l − 1Þ, and the exchange of λ1 and λl.
We note that the freedom to add Qk0<k to Qk is fixed by

the above choice of Q0
k and the constraint of lΨ ≥ 2 for the

diagram Ψ in Qj
kðj ≥ 1Þ. In this normalization, Q2kðQ2kþ1Þ

is even (odd) under mirror reflection. Our normalization is
different from some of the previous studies. For example,
the fourth charge of Ref. [24] is Q4 þ U2H in the spin
variable notation [54]. ðs; dÞ-connected diagrams in Qj

k
have the same coefficients if the lists are identical up to the
permutation explained above. Cj;m

n;d ðλΨÞ satisfies some other
nontrivial identities given in Ref. [55].
Theorem 2.—Cj;m

n;d ðλÞ is calculated from the following
recursion equation:

Cj;m
n;d ðλÞ ¼ Cj;m

n;d ðT λÞ þ
Xn
ñ¼0

ðnþ 1 − ñÞ

×
�
Cj−1;m−1
ñ;nþd−ñðλ←0Þ − Cj−1;m−1

ñ;nþd−ñð0→T λÞ
�
; ð9Þ

where T λ¼ fλ1 −1;λ2;…;λl−1;λlþ 1g, 0→λ¼ f0; λ1;…g,
λ←0 ¼ f…; λl; 0g, and l≡ jþ 1 − 2m. For λ1 ¼ −1

FIG. 2. Structure of Qj
k. kj ≡ k − j. Circles at ðs; dÞ represent

ðs; dÞ-connected diagrams in Qj
k (s > d). The commutator of

diagrams in the circle at ðs; dÞ with H0 generates the diagrams in
the crosses at ðs� 1; dÞ and ðs; d� 1Þ, indicated by the solid
arrow tip.
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case, we define Cj;m
n;d ð−1; λ2;…Þ≡ Cj;m

n;d−1ð1; λ2;…Þ for

d > 0 and Cj;m
n;d¼0ð−1; λ2;…Þ≡ Cj;m

n−1;1ð0; λ2 − 1;…Þ þ
Cj−1;m
n;0 ðλ2 þ 1;…Þ. The initial condition isCj¼1;m¼0

n;d ðλÞ¼1.

Cj;m
n;d ðλÞ ¼ 0 if λi < 0 (1 < i < l) or n < 0 or m < 0

or m ≥ bj=2c.
We obtained the general expressions of Cj;m

n;d ðλÞ for some
cases. For n ¼ 0 and m ¼ 0 case, we have

Cj;m
n¼0;dðλÞ ¼

�
j − 1þ d

m

�
−
�
j − 1þ d

m − 1

�
; ð10Þ

Cj;m¼0
n;d ðλÞ ¼

Xλ2
x2¼0

� � �
Xλj
xj¼0

θ

�
n −

Xj

i¼2

xi

�
; ð11Þ

where j > 1 and θðxÞ ¼ 1 for x ≥ 0 and θðxÞ ¼ 0 for
x < 0. Cj;m

n¼0;dðλÞ is independent of λ and Cj;m¼0
n;d ðλÞ is

independent of λ1; λjþ1; d. We note that Eq. (10) is the
generalized Catalan number [24,42,57]. The expressions
are more complicated for the n, m > 0 case. For j ¼ 3,
m ¼ 1 case, we have

Cj¼3;m¼1
n;d ðλ1; λ2Þ ¼

X
η¼λ1;λ2

Xη
x¼1

�
nþ 3 − x

3

�
þ 2

�
nþ 4

4

�

þ ðd − 1Þ
�
2

�
nþ 3

3

�
−
�
nþ 2

2

��
:

ð12Þ

We also obtained the explicit expression of Q2
k, Q

3
k for all k

from Eqs. (11) and (12).
Through the Jordan-Wigner transformation [24], the

1D Hubbard model is mapped to a spin system, resul-
ting in coupled XX chains, and a unit becomes the

local conserved density in the XX chain: ψ�;nð>0Þ
μ ðiÞ∝

σxi;μσ
z
iþ1;μ � � �σziþn−1;μσ

x̄
iþn;μþs×ðx↔yÞ and ψ−;0

μ ðiÞ¼σzi;μ,
where σαi;μ is the Pauli matrix of flavor μ, and s ¼ ∓ð−1Þn
and x̄ ¼ xðyÞ for s ¼ 1ð−1Þ [54].
There are no other local conserved quantities indepen-

dent of Qk [58]. This is shown as follows: if Fk is a
k-support charge, we can prove Fk is written as Fk ¼
ckQk þ Fk−1, where Fk−1 is a less than (k − 1)-support
charge and ckð≠ 0Þ is some coefficient. Repeating this
argument to Fk−1 and so on, we can see Fk is a linear
combination of fQlgl≤k. The details of this proof are given
in Ref. [58].
From this completeness of our charges, we can see our

Qk is written as a linear combination of local charges
obtained from the transfer matrix, and we can confirm the
mutual commutativity of our charges, ½Qk;Ql� ¼ 0, and
their SO(4) symmetry [47]. Our Qk coincides with the
transfer matrix charges [53] at least up to Q4.
Summary and outlook.—We presented the exact expres-

sion for the local charges of the 1D Hubbard model Qk.
In Theorem 1, we proved Qk is constructed of the
connected diagram, which represents the product of
units, conserved densities of the XX chain in the spin
variable notation, satisfying the conditions (i) and (ii). The
diagrams constructing Qk are accompanied by nontrivial
coefficients [55] for k ≥ 6. These coefficients can be
calculated by the recursion equation in Theorem 2.
Some of them are the generalized Catalan numbers (10),
which are also appearing in the local charges of the
Heisenberg chain [24,41,42,57]. Deriving the general
explicit formula for the coefficients is the remaining task,
which may be some further generalization of the Catalan
number. Our result is valid in both finite systems and the
thermodynamic limit.
Our results have several applications: we can study the

generalized Gibbs ensemble [12], current mean value
formula and the generalized hydrodynamics [59–62],
and factorization of correlation functions using local
charges [63] in the 1D Hubbard model. A model with
fragmented Hilbert space can be derived by considering
the strong coupling limit of the local charges in the XXZ
chain [64]. It is interesting to see what would happen in our

FIG. 3. Structure of Qk for k ¼ 6. Each plane represents the
structure of Qj

k in Fig. 2. The commutator of diagrams in the
circle at ðs; dÞ inQj−1

k withHint generates diagrams in the cross at
ðs; dÞ in Qj

k, indicated by the vertical dotted arrow tip. The
diagrams generated in the crosses are to be canceled.
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case. Recently, it has been shown that the quantum many-
body scarring model can be constructed using odd-order
charges Q2kþ1 [65]. We may make an immediate applica-
tion of our result also for this direction.
To our knowledge, this is the first time revealing the

structure of local conserved quantities in an integrable
system without the boost operator, i.e., without a recursive
way to construct them.
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