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Time-resolved ultrafast EUV magnetic scattering was used to test a recent prediction of > 10 km=s
domain wall speeds by optically exciting a magnetic sample with a nanoscale labyrinthine domain pattern.
Ultrafast distortion of the diffraction pattern was observed at markedly different timescales compared to the
magnetization quenching. The diffraction pattern distortion shows a threshold dependence with laser
fluence, not seen for magnetization quenching, consistent with a picture of domain wall motion with
pinning sites. Supported by simulations, we show that a speed of ≈66 km=s for highly curved domain walls
can explain the experimental data. While our data agree with the prediction of extreme, nonequilibrium
wall speeds locally, it differs from the details of the theory, suggesting that additional mechanisms are
required to fully understand these effects.
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The ability to manipulate mesoscopic-scale magnetization
[1] has potential applications in ultralow power magnetic
memory and logic [2–4]. For example, current-driven domain
wall speeds greater than5 km=s have beendemonstratedwith
bilayers composed of a compensated ferrimagnet and Pt [3].
Exceeding these current-driven domain wall speeds is de-
pendent either on futurematerial breakthroughs or developing
novel routes for controlling magnetic behavior. Far-from-
equilibriumphysics [5,6] in ultrafast conditions [7–9] offers a
unique possibility due to the introduction of novel dissipative
pathways that are not accessible under equilibrium. In fact, a
recent theoretical study by Baláž et al. [10] predicts that
extremely fast domain wall speeds of ≈14 km=s in ferro-
magnets can be achieved via optical pumping due to super-
diffusive spin currents [11]. This is a remarkable prediction as
it exceeds the accepted maximum domain-wall speed for
ferromagnets,≈400–600 m=s [12–14].Domainwalls,which
can be considered as bound magnetic solitons (localized
nonlinear excitationswith finite energy) [15], undergoWalker
breakdown above these speeds, and the solitonlike structure
of a domain wall becomes unstable [16,17]. This would
imply that ultrafast spin dynamics not only result in an
overall demagnetization but can also affect the long-range
spatial structure of magnetic domains over several tens of
nanometers.

While ultrafast demagnetization is well established for a
wide variety of ferromagnetic materials [18,19], only a few
studies have hinted toward the ultrafast modification of a
nanoscale domain pattern [20–23]. These studies have used
x-ray magnetic scattering to show that the diffraction rings
obtained from a labyrinthine domain pattern undergo
ultrafast distortions of both ring radius and width.
Tentative explanations have included domain wall broad-
ening [20,24], and the ultrafast rearrangement of domains
[21,22]. While these studies cannot clearly explain ultrafast
distortions of diffraction patterns, domain rearrangement
remains a viable hypothesis.
To test the prediction of extreme-speed wall motion, we

conducted optical pump, EUV magnetic scattering probe
experiments with a mixed-state domain pattern that consists
of domains of both labyrinthine and stripelike character.
Scattering from such samples yields two dominant dif-
fraction components: an azimuthally uniform and a twin-
lobed ring pattern [22]. We employed 2D fits similar to
those in Zhou Hagström et al. [22] to isolate and study the
magnetization dynamics of domains of differing character.
We measured the pump fluence dependence over an order
of magnitude. Given that domain walls typically exhibit
both inertia [25,26] and an activation energy barrier,
i.e., pinning [17,27], the fluence dependence for the
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ultrafast distortion should be different from that of demag-
netization if the ultrafast distortion is the result of domain-
wall motion. We employed micromagnetic simulations to
test the hypothesis that the preferential motion of curved
domain walls in labyrinthine domains is in fact the source
of ultrafast distortions. Our results provide experimental
evidence for the theoretical proposition that far-from-
equilibrium conditions can give rise to extreme domain-
wall speeds.
Magnetic resonant scattering was measured by tuning

the EUV photon energy to the M3 edge of Ni at 66.2 eV
at the FERMI free electron laser. A schematic of a
pump-probe experiment is presented in Fig. 1(a). A
magnetic multilayered sample with stack layering of
fTað3nmÞ=Cuð5nmÞ=½Co90Fe10ð0.25nmÞ=Nið1.35nmÞ�×
8=Co90Fe10ð0.25nmÞ=Cuð5nmÞ=Tað3nmÞg was used.

The sample was grown using magnetron sputtering on
100 nm thick polycrystalline Si membranes and is the same
sample as the one used in [22] with average domain width
of 110 nm. 50 fs resolution pump-probe measurements
were performed with an 800 nm pump and a linearly
polarized EUV probe in transmission mode. Note that the
nanoscale magnetic domain pattern of the sample exhibits
two distinct diffraction features [see Fig. 1(b)]. The first is
an isotropic ring attributed to a randomly oriented labyrinth
pattern. The second are anisotropic lobes attributed to the
stripelike component of the domain pattern. Linear ori-
entation of the labyrinth domains, verified by magnetic
force microscope (MFM) [see Fig. 1(a)], was observed due
to irreversible laser-induced deformation of the supporting
membrane [22]. The resultant strain induced in the
supported magnetic multilayer led to a weak in-plane

FIG. 1. Experimental schematic and evolution of labyrinthine domain pattern as a function of delay time. (a) Optical pump EUV
magnetic scattering probe setup with MFM image of the sample. The white arrow highlights the direction of the linear texture of the
domain pattern. Magnetic diffraction scattering on the CCD is fitted with a 2D phenomenological model described in the Supplemental
Material Sec. A [28], from which we separate the ring and lobe components. (b) Isolated isotropic (ring) and anisotropic (lobes) fit
components with arrows indicating the radius (qR, qL) and full-width half maximum (ΓR, ΓL) of scattering. Time-resolved (c) amplitude
(AR), (d) ring radius (qR), and (e) width (ΓR) obtained from the fit of the isotropic scattering (ring). Delay curves are plotted for a range of
measured fluence values from 0.8 to 13.4 mJ=cm2. The scattering amplitude which is proportional to magnetization, decays
immediately following laser excitation indicating demagnetization which recovers on ps timescales. The ring radius (qR) and width (ΓR)
of the isotropic scattering approximate the average real-space domain size and correlation length of the labyrinthine domains,
respectively. Note that the plotted data for AR, qR and ΓR are relative to the before t ¼ 0 value.
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component of magnetic anisotropy. In order to isolate the
ultrafast behavior of these two features, the scattering data
were fitted using a phenomenological 2D model similar to
[22]. Fit results including isotropic ring and anisotropic
lobe components are also shown in Fig. 1(b). Additional
details on the fitting procedure can be found in the
Supplemental Material, Sec. A [28], which includes
references [29–37].
Figures 1(c)–1(e) show the ultrafast temporal evolution

of the isotropic diffraction ring in terms of amplitude AR, q
space radius qR, and width ΓR. An ultrafast distortion of the
diffraction ring was observed, manifesting as both a
reduction in the ring radius, and a broadening of the ring
width. The temporal evolution of the equivalent parameters
for the anisotropic lobe pattern (AL, qL, ΓL) are presented in
Fig. S4 of the Supplemental Material [28]. The demag-
netization (AR and AL) occurs within 100–200 fs followed
by a slower recovery between 400 fs and 1.4 ps, depending
on the fluence as further discussed below. A double-
exponential fitting function as described in the Supple-
mental Material, Sec. B [28], was used to extract both
magnitudes and time constants associated with the tempo-
ral response.
Figure 2 shows the fluence dependence for both the ring

and lobes including demagnetization (ΔAR=AR, ΔAL=AL),
radial peak shift (ΔqR=qR, ΔqL=qL), and ring broadening
(ΔΓR=ΓR, ΔΓL=ΓL) relative to the average fitted prepump
values for t < 0. These results are also tabulated in Table S1
in the Supplemental Material [28]. The fluence dependen-
cies of both ΔAR=AR and ΔAL=AL are very similar, and are
consistent with most previous pump-probe studies [22].
The nonlinearity of both ΔqR=qR and ΔΓR=ΓR seen in
Figs. 2(b) and 2(c) is in stark contrast to the linear fluence
dependence of the amplitude quenching ΔAR=AR and
ΔAL=AL shown in Fig. 2(a). ΔqR=qR and ΔΓR=ΓR exhibit
a distinct thresholdlike feature. For fluences below
7 mJ=cm2, a relatively weak linear dependence of
both ΔqR=qR and ΔΓR=ΓR on fluence is observed.

Above 7 mJ=cm2, a much steeper linear dependence of
ΔqR=qR and ΔΓR=ΓR on pump fluence is observed, with
ΔqR=qR ¼ 5.3� 0.8% and ΔΓR=ΓR ¼ 26.7� 3.8% at the
highest fluence. In contrast,ΔqL=qL andΔΓL=ΓL are much
smaller and without any apparent linear dependence on
fluence, with largest observed shifts of 1.0� 0.4% and
8.1� 3.8%, respectively. The thresholdlike behavior of the
ultrafast diffraction ring distortions is the first main
experimental result of this Letter.
Time constants for the initial ultrafast changes τm and

slower recovery τrec for AR, AL, qR, and ΓR are presented in
Fig. 3. The demagnetization times for both the ring and lobes
vary between 100 and 200 fs, indicative of a similar demag-
netization process for labyrinths and stripes. Surprisingly, the
time constants τm for the change in ring radius and ring
width vary between 100 and 300 fs, with most data falling
between 200 and 300 fs, significantly slower than the
demagnetization times. In addition, the recovery times τrec
are also different between the demagnetization and ring
shape distortions. The demagnetization recovery times vary
from ≈600 fs to ≈1.2 ps, whereas both the ring radius and
width recover much faster, with most data falling between
200 fs and 600 fs, dependent on the fluence. This difference
in temporal response for demagnetization and ring distortion
is the second key finding of this Letter.
The threshold fluence for ring distortion (ΔqR=qR and

ΔΓR=ΓR in Fig. 2) suggests that there is an activation
energy barrier impeding domain rearrangement as typically
observed for conventional field-driven wall dynamics [17].
This result is consistent with the hypothesis that domain
rearrangement in the presence of pinning sites is the source
of ultrafast ring distortions. Furthermore, the relatively
slow rate (Fig. 3) for the change of ΔqR=qR and ΔΓR=ΓR is
consistent with domain-wall motion. Domain walls are
bound magnetic solitons that exhibit an effective inertia
[15,25,26] that impedes the response to any driving torque.
Thus, based on the distinct response times for demagneti-
zation and the ring distortions, we can confidently rule out

(a) (b) (c)

FIG. 2. Laser fluence dependence of isotropic and anisotropic scattering from labyrinthine and stripe domains. (a) Normalized
scattered amplitude dependence on fluence for both the isotropic (AR) and anisotropic scattering (AL). Fluence dependence of (b) ring
shift and (c) width for both the ring (ΔqR=qR and ΔΓR=ΓR) and lobes (ΔqL=qL and ΔΓL=ΓL). The dashed lines indicate the results of
linear error-weighted fits of the data. For AR and AL, the fits extend over the entire range of pump fluence. ForΔqR=qR andΔΓR=ΓR, two
fits were performed below and above the threshold fluence of 7.8 mJ=cm2.
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any hypothesis that the distortions in diffraction ring shape
are simply derivative results of ultrafast demagnetization
process.
Given the substantial differences in the ultrafast dis-

tortions of the stripe and labyrinth domain pattern, in
agreement with the previous report [22], it is natural to
inquire what characteristic features of labyrinth and stripe
domains underlie such differences in temporal response.
An obvious difference is the abundance of curved domain
walls for labyrinths. The possibility of curved wall motion,
in contrast to that for straight walls, is consistent with the
requirement of symmetry breaking. Symmetry breaking
was provided in the original prediction of ultrafast wall
motion by nonuniform laser illumination of a straight
domain wall [10]. In our case, the symmetry breaking is
geometrical, inherent in the wall curvature.
To verify whether the spatial motion of curved domain

walls can give rise to the observed contraction of the
diffraction ring radius, we performed micromagnetic sim-
ulations [38] for the case of a perpendicularly magnetized
thin film. We used magnetic parameters determined for
the same sample in [22]: saturation magnetization Ms ¼
616 kA=m, exchange constant A ¼ 20 pJ=m, Gilbert

damping constant α ¼ 0.01, first-order uniaxial anisotropy
K1 ¼ 739 kJ=m3, and second-order uniaxial anisotropy
K2 ¼ −266 kJ=m3. An initial equilibrium domain state
with either labyrinthine or stripelike character was gen-
erated. The domain state was then modified by suddenly
reducing the saturation magnetization by 40%. The mag-
netization was allowed to evolve according to conventional
micromagnetic parameters to a new equilibrium state. This
resulted in substantial domain wall displacements for the
labyrinthine sample, where the displacements were propor-
tional to the local domain wall curvature (see the
Supplemental Material, Sec. D [28] for additional details).
While the timescale for the wall displacement is not
accurate due to the use of micromagnetic simulations
[39], the dependence of wall displacement on the curvature
allows us to examine how such domain rearrangement

(a)

(b)

FIG. 3. Laser fluence dependence of quench and recovery time.
(a) Quench and (b) recovery time constants obtained from the
temporal fits (see the Supplemental Material, Sec. B SM) for AR,
AL, qR, and ΓR. The magnetization quench is 2 times faster than
the change in radial ring position and ring width (τm ≈ 0.3 ps)
irrespective of the fluence value. The recovery time constants
(τrec) for magnetization quench (AR and AL) are also distinct from
τrec for ring shift (qR) and width (ΓR).

FIG. 4. Simulated modification of domain pattern and calcu-
lated domain wall velocity. (a) Simulated modified domain
pattern (black and white domains) and initial state (colored
outline). The modified state was simulated assuming a 40%
reduction in the saturation magnetization as discussed in the text.
The color of the outline denotes the initial wall curvature which
was estimated using the inverse of the radius of local circle fit.
The comparison clearly shows that regions with high curvature
(dark red and blue) undergo noticeable domain wall motion.
(b) Fluence dependence of calculated domain wall velocity for
labyrinthine domains estimated using experimentally measured
and simulated contraction of diffraction ring radius.
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affects the domain pattern in reciprocal space. Figure 4(a)
presents the simulated modified labyrinth domain pattern
(black and white domains) and compares it with the initial
domain pattern, where only the outline is shown and the
color denotes initial wall curvature. The figure clearly shows
that domain walls with higher curvature (dark red or blue)
undergo noticeable wall motion. Both the observed diffrac-
tion ring radius contraction and width broadening were
qualitatively reproduced by FFT analysis of the modified
simulated labyrinth domain state (see the Supplemental
Material, Sec. D [28]). In contrast, the same modeling
of a stripe domain pattern with minimal curved walls does
not show any detectable distortions in the shape of the
FFT spatial pattern (see the Supplemental Material,
Fig. S8, [28]).
We can now estimate the domain wall speeds of the

curved walls by utilizing both the experimentally measured
and simulated contraction of the diffraction ring radius.
This was achieved by quantitatively correlating the reduc-
tion of diffraction ring radius [ðΔq=qÞsim] with the modeled
change in the wall position by defining parameter
K ¼ ðΔArms=AÞ=ðΔq=qÞsim, where ΔArms=A is fractional
areal change due to wall motion. We then determined the
average wall displacement necessary to cause the exper-
imentally observed contraction in the diffraction ring
radius. The domain wall velocity was calculated using
the following equation: v ¼ K½ðΔq=qÞexp=ρcwτm�. Here
ðΔq=qÞexp is the experimentally observed fractional change
in diffraction ring radius and τm is the time constant for the
radial shift obtained from temporal fits to the experimental
data. K is the proportionality constant as defined above. w
is the average domain width, and ρc is the curvature density
obtained from the MFM images. Additional details on
domain wall speed calculations are presented in the
Supplemental Material, Sec. E [28]. We can then estimate
average domain wall speeds of the curved walls as a
function of pump fluence, presented in Fig. 4(b). For
13.4 mJ=cm2, we estimated rms curve wall displacement
to be ≈20� 3 nm, which results in the calculated domain
wall speed of 66� 20 km=s. The observation of extreme
wall speed under far-from-equilibrium conditions is the
third and most significant result of this Letter. This is a
surprising result since domain walls in ferromagnets near
equilibrium are unstable when driven above the Walker
limit [16,17].
We note that the observation of threshold effect and

distinct time constants of ring distortion and demagneti-
zation indicate that the existing theory is still inadequate to
predict the scale of the observed phenomena. The faster rate
of distortion recovery suggests more complex physics
whereby the relaxation channels for wall dynamics are
not identical to those for the demagnetization recovery. It is
possible that other mechanisms such as magnon excitation
and relaxation need to be included [40–47]. Indeed, the
observed temporal response of the wall dynamics is like

that of a critically damped oscillator. This suggests that far-
from-equilibrium conditions can give rise to new sources of
elastic torque that can affect mesoscopic spin textures.
Overall, our Letter highlights two critical points for far-
from-equilibrium behavior. First, our results show signifi-
cant evidence of extreme domain wall speeds in qualitative
agreement with theoretical predictions [10]. Secondly, most
proposed mechanisms for ultrafast demagnetization rely on
entropy-producing microscopic single-particle processes
which occur on a length scale between the lattice constant
and the exchange length. However, extremely fast spatial
translation of domain walls requires a long-range mecha-
nism that extends over tens of nanometers, i.e., at the
mesoscopic scale [1]. The implication is that far-from-
equilibrium spin kinetics in ferromagnets are not solely
limited to demagnetization mechanisms.

The raw data generated at FERMI as well as the source
code has been made available on Open Science Framework
(OSF) [48].
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