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Quantum spin liquids (QSLs) are novel phases of matter which remain quantum disordered even at the
lowest temperature. They are characterized by emergent gauge fields and fractionalized quasiparticles.
Here we show that the sub-kelvin thermal transport of the three-dimensional S ¼ 1=2 hyperhyperkagome
quantum magnet PbCuTe2O6 is governed by a sizeable charge-neutral fermionic contribution which is
compatible with the itinerant fractionalized excitations of a spinon Fermi surface. We demonstrate that this
hallmark feature of the QSL state is remarkably robust against sample crystallinity, large magnetic field,
and field-induced magnetic order, ruling out the imitation of QSL features by extrinsic effects. Our
findings thus reveal the characteristic low-energy features of PbCuTe2O6 which qualify this compound as
a true QSL material.
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Quantum spin liquid (QSL) states refer to highly
entangled magnetic quantum ground states realized in
frustrated magnets [1,2]. Despite the quantum disorder of
the ground states, the QSLs possess well-defined emergent
fractionalized excitations such as spinons, Majorana fer-
mions, visons, and many more [1–6], rendering them
tantalizing since their initial proposal [7]. Recent years
have witnessed the progress of materializing the QSL
models [8], which has stimulated intense interest from both
experimental and theoretical sides [3,4]. By far, most efforts
in this field are devoted to two-dimensional systems because
enhanced quantum fluctuations, an ingredient for realizing
QSL states, are prominent in reduced dimensionality [2–4].
Nevertheless, there are also some three-dimensional (3D)
QSL candidates. The most prominent model systems are
examples of pyrochlore, hyperkagome, and double-layer
kagome lattices [9–13].
Among the handful of candidate QSL materials, clear-

cut evidence for the anticipated emergent fractionalized
magnetic excitations, in particular, the spinons, is rather
scarce [3,4]. Thermal conductivity, a probe only sensitive
to itinerant entropy carriers, is the method of choice to
prove the existence of spinons via their fermionic nature
and their mobility [14,15]. These important pieces of
information are difficult to diagnose by thermodynamic
or spectroscopic studies. To be specific, the spinon con-
tribution to the heat conductivity κspinon is expected to be
linear in temperature (T) toward T → 0 K [15], reminis-
cent of the electronic κe in metals. Except for some

one-dimensional spin-chain systems [16–18], compelling
experimental evidence for this sought-after κspinon signaling
a spinon Fermi surface is still pending. Earlier reports for
κspinon in other QSL candidate materials have been shown to
suffer from irreproducibility [19–23]. Some other QSL-like
results can actually be explained by a peculiar phononic
background resulting from spin scattering [24–27]. It is also
argued that defects and impurities in a genuine QSL
material can easily eliminate its fingerprints in thermal
transport [23,28,29], preventing a reconciliation with other
experimental techniques with which disorders do just the
opposite, producing fraudulent QSL-like results in trivial
systems [30–32]. It is therefore essential to exclude all these
problems in order to reveal true evidence for fermionic
spinon heat transport, κspinon.
Choloalite PbCuTe2O6 crystallizes into a cubic P4132

structure at ambient temperature [33,34]. Its magnetic Cu2þ

ions (S ¼ 1=2) constitute a 3D network similar to the Ir4þ

ions in the hyperkagome material Na4Ir3O8 [10]. However,
density functional theory calculations of PbCuTe2O6 sug-
gest its nearest neighbor (J1 ¼ 1.13 meV, giving isolated
triangles) and next-nearest neighbor (J2 ¼ 1.07 meV,
giving a hyperkagome lattice) interactions are almost of
the same strength [35]. As a result, each Cu2þ ion is at the
corner of three triangles rather than two triangles as for
the hyperkagome case. The Cu2þ lattice of PbCuTe2O6 thus
possesses four-site and six-site loops as its shortest spin
rings [35], distinct from the ten-site loop of a standard
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hyperkagome lattice [36,37], and was referred to as hyper-
hyperkagome lattice [35]. An antiferromagnetic Curie-
Weiss temperature ΘCW ≈ −22 K was inferred from the
magnetic susceptibility data of PbCuTe2O6 [34], but no
magnetic order has been found down to 20 mK (frustration
parameter f ¼ jΘCW=TN j > 1000, where TN is the Néel
temperature) [34,35,38]. PbCuTe2O6 possesses a ferroelec-
tric (FE) transition at around 1 K, accompanied by a
structural transition to a lower symmetry phase [39,40].
Notably, both the FE and structural distortions are absent in
small-grained polycrystalline samples [39]. Regardless of
this difference, characteristic multispinon continua of the
magnetic excitations were identified by inelastic neutron
scattering in both polycrystalline and single crystalline
PbCuTe2O6 samples [35], down to 100 mK (below TFE).
This places PbCuTe2O6 on the short list of promising QSL
materials with emergent spinon excitations.
In this Letter, we report clear evidence of spinon heat

transport in this 3D QSL candidate material PbCuTe2O6 at
very low temperature, revealed by a sizeable T-linear
contribution (κspinon) to the total thermal conductivity κ,
which adds to the well-known T3 contribution of phonons
(κph) [41]. Three different batches of PbCuTe2O6 samples
prepared by different techniques, namely, two differently
fabricated single crystals and one polycrystalline sample,
were involved in this study [42]. κ of all samples has been
studied at T < 1 K as well as at 6 K ≤ T ≤ 160 K [42].
Despite a rich H-T phase diagram of PbCuTe2O6, the
signature of spinon heat transport is robust in all samples
across the investigated parameter range.
As presented in Fig. 1(a), the low-T κðTÞ of the single

crystalline sample S1 at zero field shows distinct fingerprints
of a spinon Fermi surface, i.e., a linear contribution to κ. This
can easily be seen from the figure which shows the measured
κ=T versus T2. In this representation, the linear contribution
on top of a standard phononic background (κph ∝ T3 [53]) is
just the residual at 0 K [15]. Indeed, above a certain
Tdrop ≈ 340 mK, the data can be well fitted according to
κ=T ¼ aþ b × T2. Here, bT2 ≡ κph=T yields the expected
phononic background with b ¼ 0.206 mW=ðK4 cmÞ [54].
The residual a ¼ 0.075 mW=ðK2 cmÞ, as indicated by the
red dot, represents a fermionic contribution to the heat
conductivity. For insulating magnets such as PbCuTe2O6,
such a fermionic contribution can only be explained by
pertinent fractionalized magnetic excitations [14,19]. The
data thus provide clear-cut evidence for a spinon contribu-
tion, κspinon ≡ aT.
Our above conclusion of spinon heat transport and its

quantitative determination is corroborated by our measure-
ments of κ=T in magnetic fields. Figure 1(b) shows κ=TðTÞ
of sample S1 in magnetic fields up to μ0H ¼ 16 T, with the
field applied perpendicular to the heat current. The curves
are only slightly affected by the field up to μ0H ¼ 10 T, and
are shifted up with a nearly unaltered bT2 term at higher

fields. This renders our data fundamentally different from
recently claimed evidence for a spinon residual κspinon=T
term in several QSL candidate materials [24–26], where a
large magnetic field leads to a strong enhancement (factor
2;…; 10) of κ and bT2 [27,55,56]. Contrastingly, the
practically field-independent bT2 term in PbCuTe2O6

and the fact that the pure κph=TðTÞ curve is well below
the total κ=TðTÞ curves leave no room for a phononic-only
explanation to the residual a as found in other frustrated
magnets [27], confirming the κspinon transport channel.
We point out that while κph remains weakly affected by

the magnetic field, it still has a clear impact on the total κ.
First, as represented by the 12 T curve in Fig. 1(c) and also
visible directly in Fig. 1(b), an additional κ=TðTÞ peak on
top of the phonon and spinon contributions emerges below
Tonset in the field range of 11 T < μ0H < 15 T. Both the
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FIG. 1. (a) κ=T versus T2 of sample S1 in zero field, and
extraction of κph and κspinon; see text. The red dotted line represents
a linear fit to κ=T above Tdrop (red arrow), and its extrapolation to
T ¼ 0, yielding the linear residual a≡ κspinon=T (red dot). The
dashed black line represents the thus extracted κph=T. The spinon
contribution κspinon=T on top of κph=T is highlighted as the
magenta region. The dashed gray line represents the extrapolated
κph=T from the κðTÞ data above 6 K [42,54]. (b) κ=TðT2Þ in field
together with the same extrapolated κph=T curve as in panel (a).
(c) Field effect on κ for three representative field values after
subtracting the zero field value ðκH − κ0TÞ=T. Tdrop is highlighted
by triangles, and the definition of the peak height (ðΔκ=TÞjmax) is
exemplified. (d) Field dependence of κ=T isotherms measured at
two selected temperatures (thick solid lines) plotted with the
results (full symbols) extracted from the fixed-field κðTÞ=T data.
Three different regions can be identified and are displayed by the
different background colors. The black dashed line represents the
higher-temperature isotherm (green band) subtracted by a fixed
value of 0.085 mW=ðK2 cmÞ; see text.
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Tonset and the amplitude of the new peak are highly field
sensitive. Eventually, at μ0H ¼ 16 T the peak is absent
again, and the low field behavior of κ=TðTÞ is recovered
with a rather higher value of Tdrop ≈ 870 mK. Second,
Tdrop, which apparently represents an energy scale above
which κspinon can be observed, increases with the field.
As an example shown in Fig. 1(c), Tdrop ≈ 610 mK at
μ0H ¼ 10 T. Finally, the residual a≡ κspinon=T increases
considerably in this high field region above 10 T.
The general field evolution of κ=T is more clearly

presented in Fig. 1(d) as κ=TðHÞ isotherms. The high-T
(885 mK, above Tonset) isotherm shows a minor decrease at
small fields, followed by a slight continuous increase of κ=T
above μ0H ≈ 6 T, until its saturation around μ0H ¼ 15 T.
This increment is entirely due to κspinon, as was discussed
above. On the other hand, the lower-T (580 mK, below
Tonset) isotherm is more complicated, featuring a large hump
centered at 13 T. Three field regions can thus be discerned
based on the isotherms. The κ=TðHÞ isotherms first
decrease mildly in region I, and then increase somewhat
faster in region II. Region III is defined by the occurrence of
the peak. It is worthwhile to point out that the two isotherms
match nicely in regions I and II through shifting by a
constant value of 0.085 mW=ðK2 cmÞ, i.e., the difference in
the phononic contribution b × ½ð0.885 KÞ2 − ð0.58 KÞ2�.
This fact strongly suggests that a new contributor to κ
comes into play below Tonset in region III, which will be
discussed further below.
In order to evaluate whether any of the observed heat

transport phenomenology described above is affected by
the ferroelectric and accompanying structural transitions at

TFE ≈ 1 K, we performed another heat transport measure-
ment on a sample lacking the FE transition, namely, the
unannealed polycrystalline sample P. With regard to
the heat transport, it behaves basically the same as the
single crystalline sample S1 in the same T andH parameter
range [42]. Thus, our above observations represent the
intrinsic phenomenology of PbCuTe2O6, which is appa-
rently independent of the ferroelectric or structural tran-
sitions. Note that our κ=TðTÞ curves show no anomaly at
around 1 K [42], in contrast to the specific heat, which
underpins this statement [39,40,57,58]. This finding is
important, because it demonstrates that the inferred κspinon
is unaffected by the symmetry reduction induced by the
ferroelectric order and the accompanying structural phase
transition. Hence, our conclusion of compatibility with a
QSL ground state remains robust even if the subtle noncubic
distortion present in the single crystalline sample S1 below
1 K is taken into account [40].
After having established the intrinsic low-temperature

heat transport behavior of PbCuTe2O6, we turn now to the
single crystalline sample S2 which (unlike the phase-pure
samples sample S1 and sample P [42]) is known to contain
a small amount of nonmagnetic Pb2Te3O8 inclusions in an
otherwise phase pure PbCuTe2O6 matrix [35,39]. The most
obvious difference of the κðTÞ=T curves of sample S2
shown in Figs. 2(a)–2(d) compared to samples S1 and P is
an additional κ=TðTÞ peak below μ0H ¼ 11 T (in regions I
and II). It is highly sensitive toH, as embodied more clearly
in Fig. 2(e), where the extracted peak height of sample S2
reveals a sharp dip at μ0H ≈ 8 T, exactly the field at which
the ferroelectric transition is driven to its critical point
(HQCPðFEÞ ¼ 7.9 T) [57]. On the other hand, it is insensitive
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to the boundary between region I and region II. At higher
field, the additional peak is preempted by the feature
bounded to region III. Although the κ=TðTÞ peak of sample
S2 in region III is much more pronounced as compared to
samples S1 and P, their extracted contributions (Δκ=Tjmax)
match extremely well after normalizing the peaks by their
maximum value at 13 T [see Fig. 2(e)]. The field-dependent
spinon contribution κspinon=T is also extracted from the
dataset above Tonset, and compared among all three
samples, as presented in Fig. 2(f). Again, they fit very
well modulo a proper rescaling factor. In all samples, the
κspinon=T values at 16 T increase by 70% or more with
respect to their 0 T values. Further theoretical investigations
are required to rationalize this field dependence. At present,
one may speculate that it results from a field-induced
variation of the spinon band width [59], or a field-induced
shift of the spinon chemical potential [60].
It is very revealing to plot our main findings together with

a recently established thermodynamic T-H phase diagram
of the ferroelectric (TFE), magnetic (TM), and structural (TS)
orders at low T [57]; see Fig. 3. Clearly, the onsets of
the additional κ=TðTÞ peak in region III (μ0H > 11 T)
match the thermodynamic magnetic ordering temperatures
TM [57]. Hence, the excess heat conductivity which causes
the peak can unambiguously be attributed to magnon
transport. Note that magnons obey a bosonic behavior
and emerge from long-range magnetic order in contrast
to the spinons. At lower fields, the presence of the excess
κ=TðTÞ peak is obviously sample dependent since it can
only be resolved for sample S2. Here, the onset temperature
(Tonset) and the peak height [see Fig. 2(e)] track at
H < HQCPðFEÞ the ferroelectric order (TFE) at somewhat
lower T and recover at HQCPðFEÞ < H < 11 T in the
structurally distorted phase. It is therefore closely connected
with the symmetry reduction due to the ferroelectric order
and/or the structural distortion. Since phonons clearly are
not sensitive to this symmetry reduction (see above), this
low-T peak must be of magnetic origin. Despite the fact that
magnetic order could not be detected below 11 T in previous
works [34,35,38–40,57], we therefore assign also this peak
to magnon transport. It is known that PbCuTe2O6 is
proximate to magnetic order [38,40], and our data indicate
that the disordered crystal matrix in sample S2 due to the
Pb2Te3O8 inclusions drives this sample to magnetic order at
low T. Overall, the most exotic finding of this work, the
spinon contribution to thermal transport, prevails through-
out the phase diagram until it is either freezing below Tdrop

or is overshadowed by a magnetic order.
Finally, we address the freezing out of κspinon=T below

Tdrop. The depleted κspinon signal can either indicate a
spinon excitation gap or the loss of coupling between
spinons and the phonon background [61], through which κ

of an insulator is measured. Future work is required to
clarify which of these two scenarios is valid (see [42]).
To summarize, the high-quality low-T thermal conduc-

tivity of a 3D QSL candidate PbCuTe2O6 strongly suggests
the existence of itinerant spinons, and thus of a spinon
Fermi surface. The spinon heat transport is shown to be
intrinsic and robust against disorder and field-induced
phases. Our work thus highlights PbCuTe2O6 as a unique
model system for QSL research.
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