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Whereas point-gap topological phases are responsible for exceptional phenomena intrinsic to
non-Hermitian systems, their realization in quantum materials is still elusive. Here, we propose a simple
and universal platform of point-gap topological phases constructed from Hermitian topological insulators
and superconductors. We show that (d − 1)-dimensional point-gap topological phases are realized by
making a boundary in d-dimensional topological insulators and superconductors dissipative. A crucial
observation of the proposal is that adding a decay constant to boundary modes in d-dimensional topological
insulators and superconductors is topologically equivalent to attaching a (d − 1)-dimensional point-gap
topological phase to the boundary. We furthermore establish the proposal from the extended version of the
Nielsen-Ninomiya theorem, relating dissipative gapless modes to point-gap topological numbers. From the
bulk-boundary correspondence of the point-gap topological phases, the resultant point-gap topological
phases exhibit exceptional boundary states or in-gap higher-order non-Hermitian skin effects.
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Introduction.—There is increasing interest in the studies
of non-Hermitian physics [1–3]. Among them, a recent trend
is the study of topology in non-Hermitian systems [4–6].
The prime motivation for such a research direction is
that both non-Hermitian and topological systems exhibit
characteristic boundary phenomena [7–13]. Certain non-
Hermitian systems show a boundary phenomenon called the
non-Hermitian skin effect [12,14], where a macroscopic
number of bulk states are localized at the boundary. On the
other hand, the bulk-boundary correspondence [15], in
which bulk topological invariants count the number of
gapless boundary states, is one of the most notable concepts
in topological systems [16,17]. In topological systems with
the non-Hermiticity, both the non-Hermitian skin effect and
the topological boundary states can coexist, and the bulk-
boundary correspondence should hold in an unconventional
manner [12,13,18–21].
The generalization of the topological classification to

non-Hermitian systems is also of interest. In the original
classification of Hermitian topological insulators and super-
conductors [22–25], the gapped topology is mathematically
characterized by the absence of the energy eigenstates of the
Hamiltonian at the Fermi energy, E ≠ EF. The natural
extension to non-Hermitian systems is real line-gap topology
defined by ReðE − EFÞ ≠ 0 [9,26]. Mathematically, the real
line-gapped Hamiltonians are smoothly deformed into
Hermitian-gapped Hamiltonians without closing the real-
line gap [4,9,26]. Therefore, the physical consequence of the
real line-gapped topology is the bulk-boundary correspon-
dence, as in the case of the Hermitian topological phases.
More generally, the line-gapped spectrum is defined as a

spectrum that does not cross a specific line in the complex
plane [26]. For instance, if one chooses the real axis in the
complex energy plane as the reference line, such a spectrum
defines the imaginary line-gap topology, which is adiabati-
cally connected to anti-Hermitian topological phases [26].
Remarkably, the non-Hermiticity enables another exten-

sion of topology, the point-gap topology defined by E ≠ EP
[26,27]. Typically, a spectrum with nontrivial point-gap
topology surrounds the reference point EP in the complex
energy plane, and thus the point-gap topology is distinct
from any Hermitian-like topology. The topological classi-
fication of point-gapped Hamiltonians has been established
[26,28], and the physical consequences of the point-gap
topological phases have been explored [21,27,29–62]. In
particular, it has been shown that the non-Hermitian skin
effects originate from one-dimensional point-gap topologi-
cal numbers, i.e., the spectral winding number [31,32] or the
Z2 number [31]. Also, higher-dimensional point-gap topo-
logical phases may support non-Hermitian skin modes
localized at topological defects, mimicking the anomaly-
induced catastrophes [6,31,33,34,57]. Depending on the
dimension and symmetry of the system, higher-dimensional
point-gap topological phases may also host boundary
modes [21,35–38,57], and one of such point-gap topological
phases is called an exceptional topological insulator [37].
Furthermore, for the fundamental symmetry classes called
AZ† classes (see below), the correspondence between
d-dimensional point-gap topological phases and (d − 1)-
dimensional anomalous gapless modes was suggested [39],
and later proved as the extended Nielsen-Ninomiya
theorem [41].
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Whereas point-gap topological phases are responsible
for these exceptional phenomena intrinsic to non-Hermitian
systems, their realization in quantum materials is still
elusive. This Letter proposes a simple and universal plat-
form of point-gap topological phases in quantum materials.
As illustrated in Fig. 1, the platform consists of a
d-dimensional topological insulator or superconductor
where one of the boundaries is coupled to the environment
and thus dissipative. We show that the dissipation-induced
decay constant of the topological boundary modes results
in a (d − 1)-dimensional nontrivial point-gap topological
number, i.e., a (d − 1)-dimensional point-gap topological
phase. We also predict exceptional boundary states or in-
gap higher-order non-Hermitian skin effects based on the
bulk-boundary correspondence for point-gap topological
phases [21,37].
Nontrivial topology from decay constant.—Let us start

with a Chern insulator with the periodic boundary con-
dition in the x direction and the open boundary conditions
at y ¼ 1, Ly in the y direction; see Fig. 2(a). The system
supports a chiral edge mode at y ¼ 1 and an antichiral edge
mode at y ¼ Ly. If we couple one of the open boundaries,
say y¼1, to the environment, the chiral edge mode at y ¼ 1
gets the decay constant in addition to the linear spectrum,

hedgeðkxÞ ¼ vkx − iΓ; ð1Þ

where kx is the momentum in the x direction, vð>0Þ is the
group velocity, and Γð>0Þ is the decay constant. At first
sight, the decay constant seems not to change the topology
of the system, but it does change, as we see below.
To see the hidden topology due to the decay constant, we

show that the complex spectrum in Eq. (1) is equivalently
obtained by attaching a one-dimensional point-gap topo-
logical phase to the original Hermitian chiral edge state: the
effective Hamiltonian of the attached system is

hattachðkxÞ ¼
�
vkx Δ
Δ� −v sin kx þ iðΓ=2Þ cos kx − iðΓ=2Þ

�
;

ð2Þ

where the diagonal components describe the chiral edge
state and the one-dimensional point-gap topological
phase, respectively, and Δ (jΔj ≪ 1) is the coupling
between them. The one-dimensional point-gap topologi-
cal phase is the tight-binding lattice model with asymme-
tric hoppings (Hatano-Nelson model [63–65]) and sup-
ports a nonzero spectral winding number. Remarkably,
around kx ¼ 0, the attached system shows the spectrum
E0ðkxÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvkxÞ2 þ jΔj2

p
, and thus the original edge

state has a gap in the real part of the spectrum, but
there appears another chiral mode around kx ¼ π,
EπðkxÞ ¼ vðkx − πÞ − iΓ. Therefore, by shifting the origin
of the momentum space, the attached system reproduces
the complex spectrum in Eq. (1). Since the attached system
in Eq. (2) has a nonzero spectral winding number, the
dissipative chiral edge state in Eq. (1) also should have the
same nonzero winding number.
Whereas the above argument is rather heuristic, we also

have a convincing discussion on the nontrivial topology:
for a rigorous discussion, we assume that the decay
constant induced on the boundary is uniform and thus
retains the lattice translation symmetry along the edge
(namely the x direction) [66]. Then, from the Bloch
theorem, any energy eigenstate in the present model should
be labeled by kx, and we have the 2π periodicity in kx for
the energy eigenstates. This means that the chiral edge state
at y ¼ 1 and the antichiral edge one at y ¼ Ly should be
exchanged when changing kx by 2π since they cannot go
back to themselves after the one period. As a result, they
make a loop in the complex energy plane, as illustrated in
Fig. 2. In the absence of dissipation, the loop sticks to the
real axis of the complex energy plane, as in Fig. 2(a), which
implies that the spectral winding number is zero. However,
once the chiral edge mode at y ¼ 1 has the imaginary part
of the energy due to dissipation, the loop is extended to the
imaginary energy direction so it immediately gets a non-
zero spectral winding number as shown in Fig. 2(c).
Therefore, the decay constant of the chiral edge mode

FIG. 1. Universal platforms of point-gap topological phases.
d-dimensional topological insulators and superconductors are
coupled to the environment at xd ¼ 1.

FIG. 2. (a),(b) Chern insulator under the periodic boundary
condition in the x direction and the open boundary condition in
the y direction. A chiral edge mode (red) at the bottom boundary
and an antichiral edge mode (green) at the top boundary form a
loop on the real axis in the complex energy plane. (c) Chern
insulator (a) with the decay constant term Γ at the bottom
boundary. (d) Chern insulator (a) attached the Hatano-Nelson
model at the bottom boundary.
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results in the nontrivial point-gap topology. We can also
confirm that the decay of the chiral edge mode is topo-
logically the same as the attachment of the one-dimensional
Hatano-Nelson model to the boundary: the Hatano-Nelson
model gives a loop spectrum in the complex energy plane in
Fig. 2(d). Then through the reconnection of the spectra
between the Hatano-Nelson model and the chiral edge
mode, we smoothly obtain the complex spectrum in
Fig. 2(c) [66].
We can make a concrete prediction due to the nontrivial

spectral winding number from the decay constant. Namely,
the system exhibits the non-Hermitian skin effect under the
open boundary condition in the x direction. To check the
prediction, we consider the Chern insulator modeled by Qi,
Wu, and Zhang (QWZ) [70],

HQWZðkÞ ¼ sin kxσx þ sin kyσy

þ ðmþ cos kx þ cos kyÞσz; ð3Þ

which has the Chern number 1 for −2 < m < 0. Here,
σμ¼0;x;y;z are the Pauli matrices. When we impose the open
boundary condition on the y direction and put the imagi-
nary on-site potential −iΓσ0 along the boundary at y ¼ 1,
the chiral edge state gets a finite lifetime, as shown in
Figs. 3(a) and 3(b). Then, if we further impose the open
boundary condition on the x direction, the system shows
the non-Hermitian skin effect; see Fig. 3(c). We have OðLÞ
corner skin modes shown in Fig. 3(d). This behavior
entirely agrees with the prediction [66].
Universal platform of point-gap topological phases.—So

far, we have considered a two-dimensional Chern insulator
and have shown how to realize a one-dimensional point-gap
topological phase from the Chern insulator. Now we gen-
eralize the idea to other topological insulators and super-
conductors. Let us consider a d-dimensional topological

insulator or superconductor. Under the open boundary
conditions at xd ¼ 1, Ld in the xd direction, we have
topological gapless boundary modes with an opposite
topological charge at opposite boundaries. Then, if we
couple one of the boundaries, say xd ¼ 1, to the environ-
ment, the topological gapless modes at xd ¼ 1 get a finite
lifetime, namely the imaginary part of the spectrum, due to
dissipation. As we will see shortly, this configuration
realizes a (d − 1)-dimensional point-gap topological phase.
To prove the above statement, we first clarify the sym-

metry of the system. The fundamental on-site symmetries for
topological insulators and superconductors are time-reversal
(TRS), particle-hole (PHS), and their combination, chiral
symmetry (CS). These Altland-Zirnbauer (AZ) symmetries
[69] protect topological gapless boundary modes of topo-
logical insulators and superconductors [22–25]. In the
presence of the coupling to the environment, however, we
cannot retain these symmetries in their original form. Causal
fermionic theories require other on-site symmetries intrinsic
to non-Hermitian systems [71,72], which we call AZ†

symmetries [26]. The AZ† symmetries consist of TRS†,
H ¼ UTHTU†

T , UTU�
T ¼ �1; PHS†, H ¼ −UCH�U†

C,
UCU�

C ¼ �1; CS†, H ¼ −UΓH†U†
Γ, UΓUΓ ¼ 1, where H

is the Hamiltonian, andUT ,UC, andUΓ are unitary matrices
[26]. For a Hermitian H, the AZ† symmetries coincide
with the original AZ symmetries. The presence and absence
of the AZ† symmetries define the tenfold AZ† classes [26];
see Table I. One can easily check that the on-site decay
constant term −iΓ1 due to dissipation respects the AZ†

symmetries [66].

FIG. 3. The QWZ model (m ¼ −1.5, Lx ¼ Ly ¼ 50) in Eq. (3)
with −iΓσ0 term (Γ ¼ 0.2) at the y ¼ 1 boundary. (a),(b) The real
and imaginary parts of the spectrum under the periodic boundary
condition in the x direction. (c) Comparison of the complex
energy spectra under the open boundary condition (orange) and
the periodic boundary condition (other colors) in the x direction.
(d) The skin mode with the energy E ¼ 0.30 − 0.04i [the star
symbol in (c)].

TABLE I. Point-gap topological table for insulators and super-
conductors with dissipation at xd ¼ 1. Here, δ ¼ ðd − 1Þ −D,
where d is the spatial dimension of the topological insulators and
superconductors and D is the dimension of a sphere surrounding
a topological defect. The topological defect goes through the xd
direction. The superscripts SE and BS indicate the topological
numbers predicting non-Hermitian skin effects and boundary
states, respectively; see also Ref. [21]. For D ¼ 0, this table
reproduces that for (d − 1)-dimensional point-gap phases in AZ†

classes in [26].

AZ† class TRS† PHS† CS δ ¼ 0 δ ¼ 1 δ ¼ 2

A 0 0 0 0 ZSE 0
AIII 0 0 1 Z 0 ZBS

AI† þ1 0 0 0 0 0
BDI† þ1 þ1 1 Z 0 0
D† 0 þ1 0 Z2 ZSE 0
DIII† −1 þ1 1 Z2 ZSE

2 ð2Zþ 1ÞSE
2ZBS

AII† −1 0 0 0 ZSE
2 ZSE

2

CII† −1 −1 1 2Z 0 ZBS
2

C† 0 −1 0 0 2ZSE 0
CI† þ1 −1 1 0 0 2ZBS
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A critical mathematical result for our theory is the
extended Nielsen-Ninomiya theorem [41], which holds
for systems in the AZ† classes. The theorem relates the
bulk gapless points at the energies Eα with the topological
charges να to the point-gap topological number n at the
reference energy EP,

nðEPÞ ¼
X

ImðEα−EPÞ>0
να ¼ −

X
ImðEα−EPÞ<0

να; ð4Þ

where the index α labels the gapless bulk states. This
theorem implies that if topological gapless states have
different lifetimes, there exists a region of EP where n is
nonzero, namely we have a point-gap topological phase
characterized by n.
Now we come back to our system, i.e., a d-dimensional

topological insulator or superconductor with the open
boundary condition in the xd direction. Our system belongs
to an AZ† symmetry class when the system is coupled to
the environment at xd ¼ 1. Regarding the site index in the
xd direction as an internal degree of freedom, we can
identify the system as a (d − 1)-dimensional system with
“bulk” gapless states with the internal index xd ¼ 1, Ld.
Then, by the coupling to the environment at xd ¼ 1, the
(d − 1)-dimensional bulk gapless states at xd ¼ 1 have a
different decay constant than those at xd ¼ Ld. Therefore,
from the extended Nielsen-Ninomiya theorem in Eq. (4),
there exists a region of EP where the (d − 1)-dimensional
point-gap topological number n becomes nonzero. The
nonzero value of n is given by the d-dimensional bulk
topological number of the original topological insulator or
superconductor since the total topological charge of the
gapless states at xd ¼ 1 coincides with it up to sign.
Predictions.—The nonzero (d − 1)-dimensional point-

gap topological number n gives rise to several conse-
quences in the physical properties of the system. First, it
predicts the appearance of (d − 2)-dimensional boundary
modes or skin modes when imposing the additional open
boundary condition on a different direction than xd, say the
xd−1 direction [21]. For d ¼ 2, the nonzero n predicts a
second-order non-Hermitian skin effect like the Chern
insulator case in Fig. 3. The second-order skin modes
form a generalized Kramers pair [26,73] when the original
system has fermionic time-reversal symmetry. For d ¼ 3,
an odd n in class DIII† (time-reversal invariant topological
superconductor) and a nontrivial n in class AII† (topologi-
cal insulator) imply the in-gap non-Hermitian skin effects.
Still, other nonzero ns predict boundary modes (see Table I
with D ¼ 0 introduced below).
Second, the proposed system also may have similar

localized modes in the presence of topological defects. The
topological defects should go through the xd direction since
our theory treats the site index in the xd direction as an
internal degree of freedom. Then, we can obtain the point-
gap topological table in the presence of such topological

defects by generalizing the argument by Teo and Kane [74]
to point-gap topological phases; see Table I. In the new
table, the space dimension d − 1 of the point-gap topo-
logical phases is replaced by δ ¼ ðd − 1Þ −D (≥0), where
D (≤d − 1) is the dimension of a sphere surrounding the
topological defect. In particular, if we insert the π flux
(D ¼ 1) in the x3 direction through a three-dimensional
time-reversal invariant superconductor with an odd number
of the three-dimensional winding number or a three-
dimensional time-reversal invariant topological insulator,
we have a nontrivial ZSE

2 number for class DIII† or class
AII† with δ ¼ 1, in the presence of dissipation at z ¼ 1.
Thus, we obtain the non-Hermitian skin modes localized on
the π flux.
Finally, the point-gap topology also stabilizes the origi-

nal topological boundary modes of the topological insulator
or superconductor. In general, the topological boundary
modes of the topological insulator or superconductor have
tiny gaps because of the mixing with those at an opposite
boundary. Therefore, for finite Ld, they are not always
gapless and do not have well-defined topological charges in
a mathematically rigorous sense. In contrast, when the
point-gap topological number n becomes nontrivial, the
extended Nielsen-Ninomiya theorem in Eq. (4) ensures
the well-defined topological charges να, which implies that
the mixing disappears and the tiny gaps close. Indeed, the
gapless modes at xd ¼ 1 and those at xd ¼ Ld have
different imaginary parts of the energy, and thus they do
not mix. The gap closing of the boundary modes should be
observed in high-resolution spectrum-sensitive experi-
ments and sharpens the topological phenomena of the
boundary modes.
Examples.—We check the validity of our scheme in

various topological materials. For d ¼ 1, the dissipation
effect for a superconducting nanowire has been discussed
in literature [33,75–78]. The coupling of a Majorana
end state to the environment is shown to give a nontrivial

FIG. 4. 3D chiral symmetric topological insulator (Lx ¼ 300,
Ly ¼ Lz ¼ 20) in Eq. (5) with −iΓσ0τ0 (Γ ¼ 0.2) term at the
z ¼ 1 boundary. (a)–(c) The real and imaginary parts of the
spectrum under the periodic boundary conditions in the x and y
directions. (d) The complex spectrum under the periodic boun-
dary condition in the x direction and the open boundary condition
in the y direction. There appear in-gap boundary modes.
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zero-dimensional point-gap Z2 number [33]. It has been
also demonstrated that the dissipation stabilizes the
Majorana end state [78]. For d ¼ 2, we have already
shown above that our theory for a Chern insulator gives
the second-order non-Hermitian skin effect. For d ¼ 3,
exactly the same scheme was discussed for a three-dimen-
sional time-reversal invariant topological insulator [6],
which showed that non-Hermitian skin modes appear in
the π flux [see Fig. 5(b) in Ref. [6] ]. In Fig. 4, we also show
the result for the three-dimensional chiral symmetric
topological insulator (CSTI),

HCSTIðkÞ ¼ ½sin kx þ ð1 − cos kyÞ�σxτx þ sin kyσyτx

þ sin kzσzτx þ
�
−2þ

X
i¼x;y;z

cos ki

�
σ0τy; ð5Þ

where σμ and τμ are the Pauli matrices, CS is UΓ ¼ σ0τz,
and the on-site dissipation term −iΓσ0τ0 is placed at z ¼ 1.
The system realizes the δ ¼ 2 (d ¼ 3, D ¼ 0) AIII class
with ZBS ¼ 1. Under the open boundary conditions in both
z and y directions, the system hosts a boundary state inside
the point gap, as expected [66].
Summary.—We propose a universal platform for point-

gap topological phases constructed from topological insula-
tors and superconductors. Using various independent
arguments, we establish that dissipation on a boundary of
d-dimensional topological materials results in (d − 1)-
dimensional point-gap topological phases. We also con-
firm the validity of our proposal for various topological
materials.
Our scheme applies to any topological materials in the

original topological periodic table [22–25]. For instance,
by connecting a metal to an edge of a quantum Hall state
in graphene, we can realize a point-gap topological phase
similar to Fig. 3. The resulting non-Hermitian skin effect
can be observed as the chiral tunneling effect [79].
Another candidate is a topological superconducting nano-
wire with a Zeeman field [80]. By coupling a lead to one
of the ends of the nanowire, the system displays a point-
gap topological phase in 0D class D†. We can also use the
topological insulator Bi2Se3 and the variants [81] to
similarly realize a point-gap topological phase in 2D
class AII†.

Note added.— A part of the present work was reported in
[82]. We are aware of related works [83,84] after the
completion of this work.
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