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In this Letter, we manipulate the phase shift of a Josephson junction using a parallel double quantum dot
(QD). By employing a superconducting quantum interference device, we determine how orbital
hybridization and detuning affect the current-phase relation in the Coulomb blockade regime. For weak
hybridization between the QDs, we find π junction characteristics if at least one QD has an unpaired
electron. Notably the critical current is higher when both QDs have an odd electron occupation. By
increasing the inter-QD hybridization the critical current is reduced, until eventually a π-0 transition occurs.
A similar transition appears when detuning the QD levels at finite hybridization. Based on a zero-
bandwidth model, we argue that both cases of phase-shift transitions can be understood considering an
increased weight of states with a double occupancy in the ground state and with the Cooper pair transport
dominated by local Andreev reflection.
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Introduction.—Josephson junctions (JJs) with embedded
quantum dots (QDs) are ideal systems for exploring the
interplay between electron correlation and Josephson
effects [1–4]. Recent research has focused on controlling
symmetry-breaking mechanisms in Cooper pair transport,
as they can give rise to dissipation-free diode behavior
and a fixed-phase offset in the ground state [5–7]. Insights
into different Cooper pair transport processes in a JJ is
typically gained by studying its current-phase relationship
(CPR). The Josephson current, IJ, for low-transmission
junctions, relates to the critical current IC, and phase ϕ,
across the JJ as IJ ¼ IC sinðϕþ αÞ, where α is a phase shift
that depends on the junction properties. In a model
proposed by Kulik, tunneling processes that preserve
and reverse the spin ordering of the Cooper pairs are both
present in a JJ, where the CPR is determined by their net
effect [8]. When spin-order preserving processes domi-
nate, α ¼ 0 (0 junction), otherwise α ¼ π (π junction) and
IJ ¼ −IC sinðϕÞ [8–10]. 0-π transitions in a JJ can be
caused by various factors including Coulomb interactions,

subgap states, orbital parities, quasiparticle densities, and
the Kondo effect [1,11–14].
In systems with double QDs (DQDs), it is possible to

control the strengths of orbital and spin interactions over a
wide range, which is taken advantage of in spin-qubit
implementations [15–21]. DQDs coupled to a joint super-
conducting contact offer the possibility to generate spin-
correlated electron pairs [22–25]. Embedded inside a JJ,
DQDs have also been used to explore how IJ depends on
spin and orbital states [26–28]. Here, the CPR can be
determined by using a superconducting quantum interfer-
ence device (SQUID) [2,29]. However, for parallel DQDs
CPRs have been primarily obtained in theoretical studies,
whereas most experimental studies instead indirectly
determine 0-π transitions based on changes in critical
currents [13,27,30,31].
In this Letter, we test the Kulik picture in a DQD system

where the relative contribution of processes that preserve or
reverse the spin order can be tuned using electrostatic gates.
By embedding a parallel DQD in a SQUID, we are able
to study the effect of interdot hybridization and level
detuning on the phase shifts of IJ. By increasing the interdot
hybridization, going from weak to strong interdot tunnel
coupling, we find a π-0 transition for electron configurations
where each QD provides an unpaired spin. For an inter-
mediate coupling, the phase shift within such a charge
configuration is also found to changewith level detuning (δ).
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Our experimental results are complemented with zero
bandwidth (ZBW) calculations [13,32] showing that π-0
transitions can be attributed to the suppression of crossed
Andreev reflection (CAR) and correlated to an increasing
relative weight of QD double occupancy in the ground state
due to interdot hybridization and detuning.
SQUID fabrication and measurement setup.—In this

Letter, we use crystal-phase-defined nanowire QDs where
the electrons are confined in a very short zinc blende (ZB)
segment surrounded by wurtzite (WZ) barriers in an InAs-
InAsSb core-shell configuration [21,28]. The ZB QD seg-
ment is 5–10 nm long surrounded by WZ barriers that are
20 nm thick with proximitized ZB segments 150–180 nm
long on each end. First, gate electrodes are formed by
electron-beam lithography, followed by atomic-layer depo-
sition of 3 nm Al2O3 and evaporation of Cr=Auð5=95 nmÞ.
Next, Ti=Al ð5=90 nmÞ electrodes are processed, including
a superconducting loop. Figure 1(b) shows an SEM image of
the SQUID with two JJs, where one hosts the DQD and the
other a reference ZB nanowire segment.
All measurements were performed in a dilution refriger-

ator at a base temperature of 15 mK. For the supercurrent
measurements, we employ a four-probe setup as shown in
the circuit diagram in Fig. 1(c). The electron population in
both arms of the SQUID are controlled with gate electrodes
and can be switched on (conducting) and off (non-
conducting). A large series resistance (RS ¼ 21 MΩ) is
used for current-biased supercurrent measurements. To
obtain CPR, both arms of the SQUID are in an on state
such that the two JJs interfere. All the SQUIDmeasurements

were done in the Coulomb blockade regime, thus involving
Cooper-pair transport mechanisms of fourth order or higher
in the lead-QD tunnel coupling [2,10]. In case of voltage-
bias measurements, such as charge-stability diagrams, we
use a two-probe setupwhere the reference armof the SQUID
is in an off state (VTG−ref < 0) and without RS.
Results.—At sufficiently low electron occupancy, the

crystal-phase defined QD breaks into a parallel DQD
configuration [19], where the orbital energies of the two
QDs are controlled using the top gate (TG) and the
back gate (BG) [Fig. 1(e)]. The charge stability diagram
in Fig. 1(f) shows the formation of a parallel DQD where
orbital-1, strongly coupled to TG, interacts with three
orbitals A, B, and C, strongly coupled to the BG leading
to the formation of crossings I, II, and III with increasing
interdot tunnel coupling.
The SQUID measurement in Fig. 2(a) shows the differ-

ential resistance (dV=dI) of the device as a function of
magnetic field (B) and bias current (I). The switching
current (ISW) at a given B field is extracted from the
boundaries of the zero-resistance region and fitted (red
curves) to a sinusoidal SQUID equation [33]. From here on,
all the CPR plots will show extracted ISW and correspond-
ing SQUID equation fit. Figure 2(b) shows the CPR for a π
junction (red) and 0 junction (blue). To rule out spurious
effects such as magnetic hysteresis, we carried out two
measurements per B field, alternating the gate-voltage
between a spin-1/2 and a spin-0 state in orbital-1. We first
present the experimental results for the three orbital cross-
ings followed by theoretical results and discussion.
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FIG. 1. (a) SEM image of the nanowire. (b) SQUID with two JJs, where one contains a nanowire section with two wurtzite (WZ)
barrriers (labelled DQD) and the other a zinc blende (ZB) segment (labelled REF) of the same nanowire. The magnetic field, B, is
applied perpendicular to the plane of the device for CPR measurements. (c) Schematic circuit diagram of the four-probe setup used for
supercurrent measurements. (d) Schematics of the nanowire device and the conduction band energies of the crystal phases. (e) Cross-
section schematic of the nanowire device showing the top-gate and back-gate controlled DQD. (f) Charge stability diagram as a function
of the DQD top-gate (VTG) and back gate (VBG) for a source-drain voltage (VSD) of 0.43 mV, showing three different DQD crossings.
Orbital crossings I, II, III occur when an orbital with strong electrostatic coupling to the top-gate interacts with orbitals with strong
coupling to the back gate. The reference channel is in the off state (VTG−ref < 0).
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Weak interdot coupling.—We start by discussing the
results for orbital crossing I, which we refer to as the weak
interdot coupling case. The charge stability diagram for
orbital crossing I in Fig. 2(c) shows no avoided crossings
and thus represents a DQD with weak interdot tunnel
coupling [34]. Away from the orbital crossing, we find no
phase shift in the CPR for the spin-0 states, (0,0) and (0,2).
However, for the spin-1/2 states, (1,0) and (0,1), the CPR
shows a π shift. Corresponding π shifts for single isolated
orbitals have been shown in previous studies [2,35]. Here,
we find that a π shift can be obtained in a DQD even though
one QD has even spin pairing, such as (1,0), (0,1), and
(1,2), as long as the filled (or next empty) orbital is
energetically far away. We note that once orbital-1 is filled,
the CPRs exhibit no phase shift. A possible explanation is
an increase in the coupling between the DQD and the
superconducting leads once orbital-1 is fully occupied,
which becomes the dominant channel for Cooper pair
transport [36,37]. The CPRs for isolated orbitals are
presented in the Supplemental Material [38].
Inside the (1,1) honeycomb, where each QD hosts an

unpaired electron, the phase shift is independent of level
detuning, as shown in the CPRs with π shifts in Fig. 2(d).
We understand this by considering the two weakly coupled
QDs as two independent spin-1/2 channels carrying neg-
ative (π-shifted) IJ. The claim of independent channels is
supported by the ISW dependence on the charge states
as shown in Fig. 2(e), where orbital-1 energy level is
kept fixed in the Coulomb blockade regime while varying
the energy level of orbital A. We find that ISW inside the
(1,1) honeycomb with two unpaired electrons is higher
than in the (1,0) and (1,2) configurations with only one
unpaired electron.
Intermediate and strong interdot coupling.—The charge

stability diagram for orbital crossing II in Fig. 3(a) shows

avoided crossings indicating a tunnel coupling between the
two QDs, which we will refer to as the intermediate
coupling case. We estimate the interdot tunnel coupling,
t ∼ 0.8 meV, based on the charging energy, EC ¼ 8 meV,
of the top QD [38]. In contrast to the weak coupling case,
the CPR inside the (1,1) honeycomb for the intermediate
case [Fig. 3(b)] depends on the level detuning (δ) of the two
QDs, with a π shift at the center (δ ¼ 0) and no phase shift
for δ above a certain threshold. Another difference is that
the amplitude of ISW for the intermediate case at δ ¼ 0 is
one order of magnitude smaller than for the weak coupling
case (explained later). We note a slight phase shift between
the two CPRs at finite detuning [top and bottom plots in
Fig. 3(b)] which is due to a small hysteretic contribution
from the magnet and not due to the emergence of an
arbitrary phase shift (such as reported by Szombati et al.
[7]). This is confirmed by performing measurements such
as shown in Fig. 2(b).
The charge stability diagram for the case of strong

coupling, Fig. 3(c), exhibits even larger avoided crossings,
where we estimate t ∼ 1.6 meV (∼ 0.2 EC of top QD). The
CPR inside the (1,1) honeycomb for δ ¼ 0 shows no phase
shift unlike the π shifts observed for the weak and
intermediate coupling cases. The data here is noisy because
of charge fluctuations visible in the charge stability dia-
gram, possibly linked to the higher VBG. We note that the
CPR for the (0,1) configuration exhibits no phase shift
likely because of stronger coupling of the orbital with the
SC leads whereas the (1,0) and (1,2) configurations behave
as π junctions (see Ref. [38]).
Theoretical calculation and comparison with experi-

ment.—We calculated the zero-temperature Josephson cur-
rent (Iπ=2J ) through a DQD using a ZBW model [13,32] by
taking the derivative of the ground state energy as a
function of ϕ at ϕ ¼ π=2 (see Ref. [38] for details). Iπ=2J
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gives an approximation of the critical current and ISW.
To reach agreement with the experiment, we adapted the
model to suppress CAR, such that the QDs couple to
different modes in the proximitized leads [38]. The presence
of separate modes in the leads has been inferred before in
similar DQD structures, as it is a prerequisite for observation
of orbital Kondo physics [39]. We propose that the positive
voltages applied to the two gates, used to induce the two
QDs, also increases the carrier concentration on opposite
flats of the nanowire in the leads, resulting in a dominance
of local Andreev reflection processes [Fig. 4(c)]. By having
separate gates to the leads, or superconductors that extend to
the tunnel barriers, we believe it will be possible to tune
transport into a regime that favors CAR. Figure 4(a) shows
Iπ=2J as a function of the QD levels for t ¼ 0. It shows good
qualitative agreement with the results for the weak coupling
case with negative Iπ=2J (π shift) in the (1,1) honeycomb and
a magnitude that is higher than in (1,0) and (1,2) configu-
rations. As mentioned earlier, this can be understood by
considering the two QDs as two independent spin-1/2
channels. Figure 4(b) shows Iπ=2J for t ¼ 0.2 EC, which
agrees well with the experimental results for the intermedi-
ate coupling case, albeit with an estimated t ∼ 0.1 EC. At
the center of the honeycomb where δ ¼ 0, Iπ=2J is negative
with magnitude lower than for the case of t ¼ 0.
Figure 4(d) shows Iπ=2J in the two-electron regime as a

function of t and δ as the DQD levels are detuned from the
center of the (1,1) honeycomb towards the doubly occupied
(0,2) configuration. The Iπ=2J plot shows a 0-π separation,

with a gradual transition between the two regions separated
by low Iπ=2J regions. In an intuitive picture, this can be
explained by the presence of both positive (0) and negative
(π) Josephson currents [8,9]. At the transition region, the
two contributions are similar in magnitude and cancel each
other. Such gradual phase and magnitude transitions are
only observed for nonzero t. The relative weight of states
with double occupancy in the ground state increases with
both δ and t. For t > 0, the (1,1) singlet couples to the (0,2)
and (2,0) singlets [30]. As previous studies have shown,
doubly occupied spin-0 states behave as 0 junctions
whereas singly occupied spin-1/2 states behave as π
junctions [2,10]. This effect can also be seen in Fig. 4(e),
where we plot Iπ=2J and the double occupancy probability at
the center of the (1,1) honeycomb for δ ¼ 0 as a function
of t.
The picture proposed by Kulik [8], suggesting a com-

petition between processes that preserve or reverse the spin
order, provides a qualitative understanding of our exper-
imental results. The increased weight of double occupancy
with increasing interdot coupling affects the phase shift
and magnitude of ISW even at the center of the (1,1)

VBG (V)5.4 6.2

0.04

0.08

V
TG

 (V
)

VBG (V)8.0 9.0
0.04

0.08

V
TG

 (V
)

0.2

1.0

G (e2/h) 

0.2

1.0

G (e2/h) 

(a)

(c)

B (mT)
0 4.02.0

I SW
 (p

A)

14

18

(b)

20

60

20

60

B (mT)
0 4.02.0

20

(d)
60

I SW
 (p

A)

∆

◊

∆

◊

III

II

B

C

FIG. 3. (a) Charge stability diagram for orbital crossing II with
intermediate interdot tunnel coupling at VSD ¼ 0.23 mV.
(b) CPR for various points inside the (1,1) honeycomb showing
the dependence of the phase-shift on level detuning. (c) Charge
stability diagram for the strongly coupled orbital crossing III
(VSD ¼ 0.23 mV) and (d) CPR at the center of the (1,1)
honeycomb with no phase-shift.

0

-0.5

t (
E C

)

0

0.4

0 1
detuning, � (EC)

(a)

(d)(c)

� 0

0.5

�0

B (mT)
0 4.02.0

-20

I SW
 (p

A)

20(e)

-2 1εB (EC)
-2

1

ε T 
(E

C
)

-2 1εB (EC)
-2

1

ε T 
(E

C
) IJ

�/2 (a.u.)

(b)

t (EC)0 0.4
0D

ou
bl

e
oc

c. 0.2

0.25

(0,0)(0,0) (0,2)(0,2)

(1,1)

��= 0

-1

0

0.4

0

(1,1) (0,2)

-0.4

1

-1

0

1

I

II

IJ
�/2 (a.u.)

I J� /
2  (

a.
u.

)

IJ
�/2 (a.u.)

SCSC

Top-gate

QD

QD

Back-gate

Ba
rri

er

(f)

NW

FIG. 4. (a) ZBW model calculation of Josephson current ðIπ=2J Þ
as a function of QD level energies for t ¼ 0 showing higher
negative Iπ=2J inside the (1,1) honeycomb compared to (1,0) and

(1,2). (b) Iπ=2J plot for t ¼ 0.2 EC showing a negative value with
low magnitude at the center of the honeycomb. (c) Schematics
showing two separate modes in the proximitized SC and local
tunneling of Cooper pairs. (d) Iπ=2J as a function of δ and t (dotted

line in panel a). (e) Iπ=2J and double occupancy probability as a
function of t at the center of the (1,1) honeycomb for δ ¼ 0. The
increasing double occupancy weight leads to a π-0 transition.
(f) CPR at the center of the honeycomb for orbital crossings
I and II after the subtraction of reference segment ISW.

PHYSICAL REVIEW LETTERS 131, 256001 (2023)

256001-4



honeycomb. In Fig. 4(f), we plot the CPR at the center of
the (1,1) honeycomb for crossings I and II after subtracting
ISW in the reference arm. The considerably reduced super-
current in crossing II indeed points to an increasing spin-
preserving component. Detuning within the (1,1) honey-
comb for crossing II initially leads to a balance between the
two components, but eventually favoring a positive IJ
[Fig. 3(b)]. As the interdot coupling is further increased in
crossing III, the center of the honeycomb transitions to a 0
junction [Fig. 3(d)]. The Kulik picture also explains the
observed phase shift and magnitude in the (1,2) regime for
the weak interdot coupling case (see Fig. S1c [38]).
Conclusion.—In summary, we have experimentally

determined the current-phase relation of a Josephson
junction hosting a parallel-coupled DQD, focusing on
the effects of interdot tunnel coupling and level detuning.
Using a SQUID, we observed a π-0 transition with
increasing QD hybridization and probability of double
occupancy. From comparison with ZBW calculations, we
propose that the Cooper pair transport is dominated by local
Andreev reflection through separate modes in the prox-
imitized NW contacts. The data can be understood by
considering the transport process as a competition between
negative and positive Josephson currents carried by singly
occupied spin-1/2 states and doubly occupied spin-0 states,
respectively. The ability to control the phase shift via spin
states of individual QDs in a DQD JJ opens up the potential
for implementing a Josephson phase battery with a con-
trolled and arbitrary fixed-phase offset [40–44].
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