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Evaporation of cloud droplets accelerates when turbulence mixes dry air into the cloud, affecting
droplet-size distributions in atmospheric clouds, combustion sprays, and jets of exhaled droplets. The
challenge is to model local correlations between droplet numbers, sizes, and supersaturation, which
determine supersaturation fluctuations along droplet paths (Lagrangian fluctuations). We derived a
statistical model that accounts for these correlations. Its predictions are in quantitative agreement with
results of direct numerical simulations, and explain the key mechanisms at play.
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Introduction.—When dry air is mixed into a cloud, water
droplets at the cloud edge evaporate. This causes the
droplet-size distribution to broaden [1], affecting the
radiative properties of the cloud [2], and is also a pre-
requisite for rain formation [3]. Droplet evaporation occurs
in many other contexts too, e.g., in combustion [4–8],
ocean sprays [9], and for respiratory droplets in exhaled jets
of air [10–14]. In these systems, an essential physical
ingredient is that evaporating droplets saturate the
surrounding air. But the subtle coupling between phase
change and turbulent mixing at widely separated turbulent
scales [15] makes it difficult to predict the local super-
saturation and, as a consequence, droplet-size distributions.
In this work, we study the interplay between these
processes and their influence on droplet growth, focusing
on the parameter regime relevant to the edge of a cloud.
The distribution of supersaturation at droplet positions—

the Lagrangian distribution—can be strongly non-
Gaussian. Direct numerical simulations (DNS) of transient
mixing of a three-dimensional slab of cloudy air with
the surrounding dry air [Fig. 1(a)] show exponential
tails [16–19]. Non-Gaussian supersaturation fluctuations
are also seen in cloud-chamber experiments [20–22].
Without phase change, a passive scalar field mixed by
turbulence can exhibit non-Gaussian concentration fluctu-
ations in the presence of a mean scalar gradient [23–25].
Without the mean gradient, however, the steady-state

distribution is essentially Gaussian [17,18,26,27]. Non-
Gaussian tails may appear in transient mixing [28], but
must eventually disappear in a homogeneous system.
Whether the tail of the Lagrangian supersaturation

distribution is Gaussian or not makes a significant differ-
ence, because the tail determines how rapidly certain
droplets evaporate, and thereby influences the sizes of
the remaining droplets, and thus the droplet-size distribu-
tion in unknown ways.
The key question is thus how droplet phase change

affects the Lagrangian supersaturation distribution. When
phase change is frequent and rapid, no consideration of

(a) (b)

FIG. 1. (a) Initial condition used in Refs. [16–19,29]: a three-
dimensional slab of cloudy air with supersaturation sc ≥ 0,
containing droplets (filled black circles) with initial number
density n0, surrounded by dry subsaturated air with se < 0
(hashed). The supersaturation profile is shown as a solid line.
The cloudy air occupies a volume fraction χ. (b) Statistical-model
rate φðtÞ as a function of time for different Damköhler numbers;
see Eq. (4) and SM [30] for details. Parameters: χ ¼ 0.4,
Das ¼ 0.08, Dad ¼ 0.0073; Das ¼ 0.80, Dad ¼ 0.073; Das ¼
8.0, Dad ¼ 0.73 (solid lines). Parameters from Ref. [17], but
the value of τL in our DNS differs slightly from that in Ref. [17]
due to statistical variability in the forcing. The dotted line is the
steady-state limit φ� ¼ Cϕ=2 for a passive scalar with Cϕ ¼ 2

[34] (see text).
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passive-scalar mixing can explain the non-Gaussian relax-
ation of the Lagrangian supersaturation distribution. Large-
eddy simulations of droplet growth by condensation in a
cloud chamber [21] show an anticorrelation between
supersaturation sðx; tÞ and the local droplet-number density
nðx; tÞ in the steady state: in regions with many droplets,
the air is strongly subsaturated (very negative values of s),
while it is less so in regions with few droplets (less negative
s). It is plausible that this effect may change the tails of the
Lagrangian supersaturation distribution, but existing sto-
chastic models [29,35–41] cannot explain this, because
they do not describe how sðx; tÞ is affected by phase change
locally.
We derived a statistical model that describes transient

Lagrangian supersaturation fluctuations developing from
an initial inhomogeneity, such as the configuration shown
in Fig. 1(a), and performed DNS for this configuration to
validate the model. We show here that the model captures
the key mechanisms that determine the shape of the
Lagrangian supersaturation distribution. First, when mixing
occurs on timescales much shorter than phase change, non-
Gaussian tails form only during the initial transient, and
large-time relaxation is characterized by a Gaussian dis-
tribution of sðx; tÞ. Second, in the opposite limit of rapid
phase change, the distribution is no longer Gaussian.
Strong phase change drives the mean of the distribution
close to its upper bound, while the variance decays more
slowly. The distribution is squeezed and becomes non-
Gaussian. This is reflected in a strong positive correlation
between n and s, formed because phase change tends
to establish saturation in regions with many droplets.
This mechanism—the opposite of the effect described in
Ref. [21]—explains the tails in the Lagrangian supersatu-
ration distribution described in earlier studies [16–19].
Beyond this qualitative explanation, the model predicts
supersaturation distributions in excellent quantitative
agreement with DNS results. The key to success is that
the model inherits its supersaturation dynamics from first
principles, rather than imposing an external driving result-
ing in a Gaussian steady state [35,36,39].
We start from simplified microscopic equations [29]

governing droplet evaporation in turbulent flow:

∂tuþ ðu · ∇Þu ¼ −ϱ−1a ∇pþ ν∇2u; ∇ · u ¼ 0; ð1aÞ

∂tsþ ðu · ∇Þs ¼ κ∇2s − A2Cd; ð1bÞ

d
dt
x ¼ u;

d
dt
r ¼ A3s=r: ð1cÞ

Equation (1a) is the Navier-Stokes equation for the incom-
pressible fluid-velocity field uðx; tÞ, where ϱa is the mass
density of air, and ν its kinematic viscosity. Equation (1b)
describes supersaturation s ¼ qv=qvs − 1, with water-vapor
mixing ratio qv ¼ ϱv=ϱa, the ratio of the mass densities of

vapor and air, and κ is the diffusivity of supersaturation.

Further, Cdðx; tÞ ¼ ð4π=3Þϱwnðx; tÞðd=dtÞr3 is the local
rate of change of droplet mass, averaged over all droplets in
the vicinity of x with droplet radius r. Here ϱw is the liquid-
water density, and nðx; tÞ is the droplet-number density.
Equations (1c) state that the droplets follow the flow, and
how the droplet radius r changes [42].
We emphasize that the dynamics (1) is transient and

tends towards a well-mixed steady state. The variance σ2sðtÞ
of supersaturation fluctuations tends to zero due to dis-
sipation (with scalar dissipation rate εs ≡ 2κhj∇sj2i) and
phase change:

d
dt
σ2s ¼ −εs − 2A2ðhsCdi − hsihCdiÞ: ð2Þ

Here, the averages are over a given microscopic configu-
ration at time t.
How the steady state is approached depends on the

nondimensional parameters of the problem. We nondimen-
sionalize Eqs. (1) and (2) as follows [29]: time, velocities,
and positions with the large-eddy turnover time τL ¼ k=ε
(with turbulent kinetic energy k and kinetic dissipation
rate ε), and the turbulent rms velocity u0 ¼

ffiffiffiffiffiffiffiffiffiffi

2k=3
p

;
supersaturation with jsej, where se is the initial subsatura-
tion of the dry air outside the cloud; droplet radii with the
initial average droplet radius r0. In the limit of large
Reynolds number, the following nondimensional para-
meters remain: the Damköhler numbers Dad ¼ τL=τd
and Das ¼ τL=τs (with supersaturation relaxation time τs
and droplet-evaporation time τd defined as in [29]), and the
volume fraction χ of cloudy air [Fig. 1(a)]. The Schmidt
number Sc ¼ ν=κ is of order unity [43].
Earlier attempts to analyze the process were based on

statistical models of mixing and evaporation that describe
droplet evaporating in direct response to a spatially inho-
mogeneous mean field given by an ensemble average,
hsðx; tÞi [40,41,44]. A more sophisticated model [29]
accounts for how droplet-phase change is affected by
Lagrangian supersaturation fluctuations, but still assumes
that they decay exponentially towards the mean. Both types
of models explain how the extent of complete droplet
evaporation depends on the Damköhler numbers, but fail to
reproduce the far tail of cloud-droplet-size distribution
obtained in DNS [16–19]. A likely reason is that these
models underestimate the magnitude of supersaturation
fluctuations. A further shortcoming is that these models
assume exponential relaxation of supersaturation to
hsðx; tÞi. As a consequence, they fail to reproduce the
passive-scalar limit [34], namely Gaussian supersaturation
fluctuations with exponentially decaying variance.
The question of how a passive-scalar distribution relaxes

as it is mixed by turbulence has a long history. Eswaran and
Pope [45] analyzed this process systematically using DNS.
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Their results inspired and benchmarked increasingly accu-
rate models for passive-scalar mixing [28,46–51].
Model.—The mapping-closure approximation [50,51]

describes how the shape of a passive-scalar distribution
changes as the scalar is mixed in turbulence. The approxi-
mation relies only on one-point statistics. Correlations are
not needed. As a consequence, the approximation does not
predict the speed of the mixing process, but yields accurate
and robust predictions for the sequence of shapes of the
distribution. Therefore it is ideally suited for our purposes.
The mapping closure for Eulerian supersaturation fluctua-
tions starts from

sðx; tÞ ¼ Xfξ½x=λðtÞ�; tg; ð3Þ

where λðtÞ is a time-dependent length scale, ξ is a spatially
smooth random Gaussian field with mean zero and unit
variance, and X is the time-dependent mapping from
ξ½x=λðtÞ� to sðx; tÞ. Inserting (3) into (1b), one obtains

∂tX ¼ φðtÞð−η∂ηX þ ∂
2
ηXÞ − DashCdjs ¼ Xi: ð4Þ

In comparison to the original model [50,51],
Eq. (4) contains the phase-change term hCdjs ¼ Xi ¼
XhrN=Vjs ¼ Xi, with droplet number N and spatial
volume V. We approximate this term by a mean-field
decoupling of the conditional average [see Supplemental
Material (SM) [30] for details]

hCdjs ¼ Xi ¼ Xhrjs ¼ XihNjs ¼ Xi=hVjs ¼ Xi: ð5Þ

The factor φðtÞ ¼ κ=½u20τLλ2ðtÞ� in Eq. (4) is the non-
dimensional relaxation rate of the Eulerian distribution.
How φðtÞ changes as a function of time is determined by
processes at both small and large length scales, as the
following argument shows. For passive-scalar mixing, the
scalar variance decays exponentially in the self-similar
regime [34], ðd=dtÞσ2s ¼ −Cϕσ

2
s . with Cϕ ≈ 2. In this case,

φðtÞ approaches the steady-state value, φ� ∼ Cϕ=2. The
steady state emerges as a balance between the scalar
variance cascading toward large wave numbers and rapid
dissipation at large wave numbers. In physical dimensions,
the steady-state length scale λ� ¼ ½2κk=ðCϕεÞ�1=2 equals
λTð5CϕScÞ−1=2 where λT ¼ ð10νk=εÞ1=2 is the Taylor
microscale. In other words, both large-scale mixing and
small-scale diffusion matter.
With phase change, φðtÞ is unknown. We determine it

using DNS; see (SM) [30] for details. The results are
summarized in Fig. 1(b) which shows how φðtÞ evolves as a
function of t. For passive-scalar mixing, the predicted
plateau at φ� is approached after two large-eddy turnover
times, at t ≈ 2. With phase change, φðtÞ is larger, corre-
sponding to smaller λðtÞ. This is consistent with the notion
that phase change generates supersaturation gradients by

driving the air toward saturation where droplets exist, while
subsaturated regions without droplets remain subsaturated.
To obtain the Lagrangian supersaturation fluctuations,

Pope [51] suggested to use a Langevin equation for
ξðtÞdξ ¼ −RðtÞξdtþ ½2RðtÞ�12dv, where dv is the increment
of a Gaussian random process, and to compute the
supersaturation as sðtÞ ¼ X½ξðtÞ; t�. The Langevin equation
ensures that the distribution of ξðtÞ relaxes to a normalized
Gaussian, and the function Xðη; tÞ maps this Gaussian to
the Eulerian supersaturation distribution. This ensures that
the Lagrangian supersaturation distribution relaxes to
the Eulerian one, as required. We set RðtÞ ¼ CφðtÞ, where
C is a constant. This is motivated—at least for a passive
scalar—by the fact that supersaturation fluctuations due to
turbulent mixing experienced by a fluid element reflect the
diffusive term κ∇2s in Eq. (1b), and that the fluctuations of
this term are proportional to φðtÞ under the mapping
closure. Comparison with DNS shows that RðtÞ ¼ CφðtÞ
works very well for the first two large-eddy turnover times,
for Das up to 8.0. We find that C decreases as Das increases
(see SM [30]), because phase change tends to maintain
saturation in regions with droplets. For times much larger
than the large-eddy turnover time, the precise form of RðtÞ
does not matter because the Lagrangian distribution has
almost relaxed to the Eulerian one.
Results.—Figure 2 shows the Lagrangian supersaturation

distribution PLðs; tÞ from the statistical model, solid lines,
compared with DNS results (see SM [30] for details),
symbols. Shown are two cases: small and large Damköhler
numbers (parameters from Ref. [17]). We see that the
model reproduces the DNS results quantitatively.
For small Das, the effect of phase change is small at short

times; the distribution is close to that of a passive scalar
(blue dashed line). Supersaturation behaves essentially like
a passive scalar during the first large-eddy turnover time,

(a) (b)

FIG. 2. Lagrangian supersaturation distributions. (a) Das ¼
0.80, Dad ¼ 0.073, χ ¼ 0.4 (parameters from Ref. [17]). DNS
results (see SM [30] for details): symbols (t ¼ 0.68, blue filled
square; t ¼ 1, green filled triangle; t ¼ 1.69, red filled circle;
t ¼ 2.36, orange filled diamond). Statistical-model simulations:
solid lines. Statistical-model simulations for a passive scalar
(t ¼ 0.68, 2.36, dashed). The shift due to phase change is
indicated by horizontal arrows. (b) Same as (a) but for
Das ¼ 8.0, Dad ¼ 0.73 [17]; passive-scalar result shown only
for t ¼ 0.68. The DNS results were obtained using the same
turbulent velocity field and the same initial conditions.
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t ∼ 1. At later times, droplet-phase change matters more,
but its effect is straightforward, it causes the peak of the
distribution to shift somewhat compared to the distribution
for Das ¼ 0 (orange dashed line), to less negative values of
s, while supersaturation fluctuations are still approximately
Gaussian [Fig. 2(a)]. For larger values of Das, by contrast,
the evolution of the supersaturation distributions looks very
different [Fig. 2(b)]. The distribution remains non-Gaussian
at large times.
To pin down the precise mechanism, we followed the

droplet-number density nðtÞ and the local supersaturation
sðtÞ for different fluid parcels in DNS. The results are
summarized in Fig. 3 which shows the conditional average
of the local-droplet number density conditional on the
surrounding supersaturation for the same parameters as in
Fig. 2. For small Damköhler numbers, the average does not
change much during the time shown; it is still strongly
influenced by the initial condition. For large Das, by
contrast, the average changes rapidly, and the positive
correlation between nðtÞ and sðtÞ increases significantly.
The statistical model captures this very well. The mecha-
nism is simply that a parcel containing many droplets
cannot remain sub- or supersaturated for long, because
phase change drives the air quickly towards saturation
when Das is large. As a consequence, parcels with few
droplets tend to have much more negative values of s,
compared with a parcel with small Das. The strong
suppression of the conditional average hnðtÞjsðtÞ ¼ si at
large Das explains how the non-Gaussian tails evolve in
Fig. 2(b): the left tail of PLðs; tÞ disappears quickly as time
increases, because droplets saturate their surroundings, and
therefore fewer of them experience very dry air.
For small Das, the mapping closure results in Gaussian

relaxation. Phase change causes non-Gaussian tails. In
order to describe these tails, it is necessary to condition
Cd on supersaturation, Eq. (5). The conditioning also
ensures that the supersaturation fluctuations remain
bounded, as they must because neither phase change nor
mixing can turn subsaturated into supersaturated air.

Discussion.—We begin by discussing in more detail,
how our results relate passive-scalar mixing. Eswaran and
Pope [45] described the shape change of the Eulerian
passive-scalar distribution as a function of time. The initial
condition [Fig. 1(a)] dictates that the Eulerian distribution
is, initially, the sum of two narrow peaks, located at s ¼ sc
and se. It relaxes first to a U-shaped form. The left tail of
the Lagrangian supersaturation distribution reflects how
the Eulerian peak at s ¼ sc broadens. At large times, the
Eulerian U-shaped distribution relaxes to a Gaussian.
Our model predicts the same for small but not

negligible Das, with one important difference: phase
change causes the mean of the Lagrangian supersaturation
distribution to shift to the right [Fig. 2(a)], while mixing
causes the distribution to narrow, remaining approximately
Gaussian. In this case, the mapping is approximately
given by Xðη; tÞ ¼ σsðtÞηþ μsðtÞ. Inserting this into
Eq. (4) and assuming passive-scalar relaxation of the width,
dσs=dt ¼ −Cϕσs=2, yields dμs=dt ¼ −Dasμs. So the stan-
dard deviation decays more rapidly than the mean for small
Das, consistent with Gaussian relaxation.
At large Das, the time evolution of the Lagrangian

supersaturation distribution is strongly affected by
phase change, resulting in persistent non-Gaussian tails
[Fig. 2(b)]. Our model explains why the Lagrangian
supersaturation distributions relax so differently for small
and large Das. Rapid phase change quickly drives the mean
of the distribution toward the upper bound of the super-
saturation distribution. As a result, the distribution is
squeezed toward s ¼ 0, thus preventing a Gaussian from
forming. The distribution is bounded because subsaturated
air cannot obtain a positive supersaturation through
droplet evaporation. Therefore saturation (s ¼ 0) consti-
tutes an upper bound for the Lagrangian supersaturation
fluctuations.
We contrast our results with those of Prabhakaran

et al. [21]. They found a negative correlation between
nðtÞ and sðtÞ in large-eddy simulations designed to model
droplet condensation in a cloud chamber. Their system is
statistically stationary, but the statistical model highlights
the mechanism leading to their findings. In their case, the
air is saturated or supersaturated, so droplets tend to grow
by condensation. The resulting drive towards saturation
gives rise to a negative correlation between nðtÞ and sðtÞ.
The model describes not only the Lagrangian super-

saturation fluctuations quantitatively, but also the droplet-
size distribution (not shown, see SM [30]). Our earlier
model [29] yielded qualitative but not quantitative agree-
ment, highlighting the importance of correlations between
n and s.
We recall that Damköhler numbers in atmospheric

clouds tend to be large, simply because the relevant length
scale L is large, causing large τL. It is tempting to argue that
the persistent left tail of the Lagrangian supersaturation
distribution at large Damköhler numbers in Fig. 2(b) is

(a) (b)

FIG. 3. Correlations between droplet-number density and
supersaturation. Average hnðtÞjsðtÞ ¼ si of droplet-number
density at time t conditional on local supersaturation s.
(a) Das ¼ 0.80, Dad ¼ 0.073, and χ ¼ 0.4 (parameters from
Ref. [17]). DNS results (see SM [30] for details): symbols
(t ¼ 0.68, blue filled square; t ¼ 1.69, red filled circle;
t ¼ 2.36, orange filled diamond). Statistical-model simulations
(lines). (b) Same as (a) but for Das ¼ 8.0 and Dad ¼ 0.73 [17].

PHYSICAL REVIEW LETTERS 131, 254201 (2023)

254201-4



more representative of atmospheric relaxation than
the Gaussian relaxation at small Damköhler numbers.
However, the local supersaturation field around individual
droplets is difficult to observe in situ. Observations
resolving supersaturation at larger scales, of the order of
one meter, indicate Gaussian distributions [52], but better
resolved laboratory measurements reveal skewed distribu-
tions [53], as predicted by our model.
Here we analyzed moist systems, with Dad=Das ∝

ðρwn0r30Þ−1 ∼ 0.1. We expect the present model to apply
equally well to dry clouds where complete droplet evapo-
ration occurs frequently, but we have not yet explored this
regime.
Villermaux et al. [7] measured the joint dynamics of

vapor and droplets in a dense acetone spray. They analyzed
vapor concentrations for different flow configurations
considering the limit of large droplet-number density n0
and large Damköhler numbers, where the droplets in the
spray prevent each other from evaporating, but evaporate
instantaneously in dry air. In this limit, correlations
between nðx; tÞ and sðx; tÞ are extreme, and it remains
to be seem whether they can be captured by our model.
More generally, it is of interest to compare the accuracy of
the present mapping-closure model with predictions of the
linear-eddy model [54], where turbulent stretching and
folding is represented by a one-dimensional map [55–57].
Conclusions.—We derived a statistical model for the

transient supersaturation fluctuations around droplets near
the cloud edge, where turbulence mixes dry with cloudy air,
causing the droplets to evaporate. The model explains the
key mechanisms determining Lagrangian supersaturation
fluctuations, and its predictions are in quantitative agree-
ment with earlier DNS studies of droplet evaporation at the
cloud edge [16–19,29]. This advance became possible
because the model describes supersaturation dynamics
and the local coupling due to phase change using a
mapping closure, which is known to yield quantitative
results for passive-scalar mixing. At the same time, the
model is simple enough so that it can be used to resolve
subgrid scale effects in large-eddy simulations with high
precision.
We stress that the present model, unlike earlier statistical

models, accounts for local correlations between droplet
numbers and supersaturation. This opens the possibility to
model the dynamics of denser turbulent aerosols, such as
industrial sprays.
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