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Data assimilation (DA) of turbulence, which involves reconstructing small-scale turbulent structures
based on observational data from large-scale ones, is crucial not only for practical forecasting but also for
gaining a deeper understanding of turbulent dynamics. We propose a theoretical framework for DA of
turbulence based on the transverse Lyapunov exponents (TLEs) in synchronization theory. Through
stability analysis using TLEs, we identify a critical length scale as a key condition for DA; turbulent
dynamics smaller than this scale are synchronized with larger-scale turbulent dynamics. Furthermore,
considering recent findings for the maximal Lyapunov exponent and its relation with the TLEs, we clarify
the Reynolds number dependence of the critical length scale.
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Predicting the future states of the Navier-Stokes (NS)
turbulence is a huge challenge due to its chaotic dynamics
over broad spatiotemporal scales. In general, observational
data on small-scale turbulent structures are unavailable,
yielding a small-scale initial-condition uncertainty. The
small-scale uncertainty increases exponentially fast as
eλtðλ > 0Þ, where the maximal Lyapunov exponent λ of
the three-dimensional NS turbulence is mainly determined
by the Kolmogorov timescale τ [1] as λ ∝ 1=τ. This
exponential error growth from the small scales ultimately
limits the predictability of large-scale motions [2,3].
Therefore, it is crucial for the prediction of turbulence to
reduce such small-scale uncertainty, in other words, to infer
small-scale turbulent structures based on observational data
from large-scale ones. Recent findings regarding vortex
stretching mechanisms, based on the Richardson energy
cascade picture [4,5], suggest that this is possible because
small-scale vortices are generated by larger-scale ones.
Data assimilation (DA) is suitable for such inferences

[6]. Previous studies have determined critical length scales
below which turbulent structures can be inferred via DA
using only observational data from larger-scale structures
[7–14], i.e., the small-scale turbulent dynamics can be
reconstructed or synchronized by larger-scale dynamics.
Interestingly, in three-dimensional turbulence, a common
critical length scale, approximately 20η where η is the
Kolmogorov length, has been reported regardless of the
details of the DA algorithms. This length scale corresponds
to a wave number of k� ≈ 0.2=η, which was found first in
the continuous DA [7] and recently found in the four-
dimensional variational DA [9] and the nudging DA
method [10]. This indicates that the slaving small-scale

dynamics can be understood based on the nature of the
Navier-Stokes equations (NSEs) rather than on a specific
DA algorithm. As discussed later, this small-scale synchro-
nization is also essential for understanding turbulence
physics [4,5] and modeling [15]; however, the physical
origins of the critical length scale and the Reynolds-number
dependence remain unclear.
In this Letter, we propose a theoretical framework for

studying such DA phenomena as a stability problem. The
proposed framework explains, for the first time, how the
critical length scale can be determined by the property of
the NSEs. Inspired by the studies of chaos synchronization
[16,17], we introduce an invariant manifold, DA manifold,
in phase space and present a stability analysis, wherein the
transverse Lyapunov exponents (TLEs) characterize the
critical length scale, determining the success or failure of
the DA process.
As shown later, the TLEs are related to the maximal

Lyapunov exponent (LE) λ of the turbulence attractor. In
the context of unpredictability in turbulence [2,3], insights
into instabilities and the maximal LE in error propagation
processes have been elucidated [18–22]. In particular,
recent studies discovered that, contrary to the conventional
belief, λτ increases with the Reynolds number [18–20]. We
show that this novel discovery for the maximal LE provides
valuable insights into small-scale synchronization through
analysis of the TLEs, and finally conclude that the
normalized critical wave number, k�η, also increases with
the Reynolds number.
The synchronization theory has already been utilized to

study DA in chaotic dynamics with noisy observations and
model error or mismatch. For instance, pioneering works in
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this direction have analyzed the system coupling in DA for
the Lorenz-63 model [23] and investigated the spatial
structures of synchronization error in DA for the Lorenz-
96 model [24]. In this study, we introduce the TLEs to
uncover the nature of turbulence governed by the NSEs. In
particular, we focus on small-scale synchronization by DA,
its dependence on the Reynolds number, and a novel
relationship with unpredictability.
Formulation.—Following the mathematical formulation

by Olson and Titi (2003) [13], we use the continuous DA
(CDA). The goal is to reconstruct the velocity field u
governed by the NSEs for incompressible flows:

∂tuþ ðu · ∇Þu ¼ −∇π þ νΔuþ f ; ∇ · u ¼ 0; ð1Þ

with unknown initial conditions uð0Þ on the d-dimensional
periodic domain ½0; L�d. We refer to u as the true velocity
field. Here, π denotes the pressure, f is the external force,
and ν stands for the kinematic viscosity.
The underlying assumption in CDA is that the true field

uðtÞ can be partially observed for any t ≥ 0. To define this
partial observation, we introduce the projections Pka and
Qka in the Fourier representation as follows:

Pkav ¼
X

jkj<ka
v̂keik·x; Qka ¼ I − Pka; ð2Þ

where v̂k is the Fourier coefficient of the velocity field v
corresponding to the wave number vector k∈ f2πm=L∶
m∈Zdg. For each wave number ka, which is a key control
parameter in this study, these operators decompose the
velocity fields into two parts: large-scale p ≔ Pkau and
small-scale q ≔ Qkau, i.e., u ¼ pþ q. The CDA assumes
that the large-scale structure of the true velocity field pðtÞ
can be observed at all times t ≥ 0. Therefore, the primary
challenge is reconstructing qðtÞ under unknown initial
conditions qð0Þ using the observational data for fpðtÞgt≥0.
To accomplish this, let us consider an approximation ũ of

the true field u decomposed as ũ ¼ p̃þ q̃, where p̃ ≔ Pka ũ
and q̃ ≔ Qka ũ. As the true data p is available, we set
p̃ðtÞ≡ pðtÞ, a method called direct insertion, i.e., ũðtÞ ¼
pðtÞ þ q̃ðtÞ for any t ≥ 0. The evolution equations for q̃ðtÞ
are derived from Eq. (1) using Qka :

∂tq̃þQkaðũ ·∇ũÞ¼−∇π0 þνΔq̃þQka f ; ∇ · q̃¼ 0; ð3Þ

where π0 ≔ Qka π̃ and π̃ denotes the pressure corresponding
to ũ [13]. Note that the solution of Eq. (3) is determined by
the observational data fpðtÞgt≥0 and initial conditions q̃ð0Þ.
In the two-dimensional case (d ¼ 2), Olson and Titi

rigorously showed a sufficient condition for successful
CDA; for a given kinematic viscosity ν and forcing
term f , there exists a critical wave number k�a such that,
if ka > k�a, then q̃ðtÞ converges to qðtÞ exponentially, i.e.,
ũðtÞ → uðtÞðt → ∞Þ. Therefore, CDA enables us to infer

the small-scale structure of the true velocity field q without
the need for direct observation.
In the three-dimensional case (d ¼ 3), Yoshida,

Yamaguchi, and Kaneda [7] studied CDA using direct
numerical simulations of the NSEs with assimilation at
each time step. Starting with the initial velocity fields of
uðtÞ and ũðtÞ, the velocity fields uðtþ ΔtÞ and ũðtþ ΔtÞ
were calculated independently using the fourth-order
Runge-Kutta method. As an assimilation step, p̃ðtþ ΔtÞ
was replaced by the true state pðtþ ΔtÞ, which results in
ũðtþ ΔtÞ ¼ pðtþ ΔtÞ þ q̃ðtþ ΔtÞ. Repeating this proce-
dure, we can conduct numerical experiments of CDA
approximately. Applying this method, the critical wave
number k�a was identified as k�aη ¼ 0.2 in [7].
Numerical experiments.—We conducted direct numeri-

cal simulations of the three-dimensional NSEs in a periodic
box with L ¼ 2π driven by a steady force f ðx; y; zÞ ¼
ð− sin x cos y; cos x sin y; 0ÞT . The Reynolds number used
in this work is defined as the temporal average of
Re ¼ 2E2=ð3νϵÞ as [18], where E and ϵ denote the spatial
average of the kinetic energy and energy dissipation rate,
respectively. Unless otherwise mentioned, we fix the
Reynolds number at Re ¼ 570. Figure 1(a) shows the time
series of kinetic energy E in a statistically steady state; see
the Supplemental Material [25] about the details of the
numerical experiments.
The initial condition of the true system is a turbulent field

uð0Þ ¼ pð0Þ þ qð0Þ taken from statistically steady states.
We obtained the initial condition ũð0Þ by adding a pertu-
rbation only to qð0Þ. This procedure is similar to that adop-
ted by Yoshida, Yamaguchi, and Kaneda [7]. Figure 1(b)
shows the time series of the approximation error between
uðtÞ and ũðtÞ, defined by the energy of the difference field,
ΔEðtÞ ¼ 1=2ju − ũj2, where juj2 ¼ P

k jûkj2, for three
values of ka: kaη ¼ 0.17 (solid red), 0.20 (dotted green),

FIG. 1. Continuous data assimilation in the box turbulence.
(a) Time series of kinetic energy EðtÞ in statistically steady states,
normalized by the Kolmogorov timescale τ. (b) Time series of
approximation error ΔEðtÞ between uðtÞ and ũðtÞ for kaη ¼ 0.17
(solid red), 0.20 (dot green), and 0.23 (dashed blue).
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and 0.23 (dashed blue). Although the approximation error
ΔE does not decrease for kaη ¼ 0.17 and 0.20, it decreases
exponentially for kaη ¼ 0.23, thereby indicating a success-
ful DA process. In other words, when kaη ¼ 0.23, small-
scale structures of the velocity field, q, can be determined
by the sequential data of large-scale structures, p. This
result is quantitatively the same as that of the previous
studies [7–10]; i.e., the critical wave number is k�aη ¼ 0.2
irrespective of the differences in the forcing term and
details of the DA methods. For the spatiotemporal dynam-
ics of vortex structures reconstructed using the DA process,
refer to the movie provided as part of the Supplemental
Material [25].
DA manifold and its stability.—To understand the

experimental results of the DA, we study the (skew-
product) dynamical system ðp; q; q̃Þ determined by the
NSEs, which can be expressed as ∂tp ¼ Fðp; qÞ, ∂tq ¼
Gðp; qÞ (base system), and Eq. (3), ∂tq̃ ¼ Gðp; q̃Þ (fiber
system). Inspired by the studies of chaos synchroniza-
tion [16,17], we focus on the manifold defined by
M ¼ fðp; q; q̃Þ∶q̃ ¼ qg, which is invariant because any
solution trajectory starting from an initial point on M
remains within it. To emphasize its importance within the
context of DA, we refer to M as the DA manifold, which
corresponds to the synchronization manifold in synchro-
nization theory. The inset of Fig. 2 shows schematics of the
solution trajectory and M in the phase space.
The success of the DA process implies asymptotic

stability of M. Let us now consider a successful DA
process, i.e., a solution trajectory starting at an initial
point apart from M, i.e., qð0Þ ≠ q̃ð0Þ, converges to M

asymptotically in time; that is, q̃ðtÞ → qðtÞðt → þ∞Þ, as
illustrated in the inset of Fig. 2. This can be interpreted as
M being asymptotically stable. The linear stability analysis
ofM gives a priori knowledge on whether the DA process
succeeds or fails. To study the stability, we introduce an
infinitesimal perturbation to the velocity field δq ¼ q̃ −
qð≠ 0Þ and derive the following variational equations:

∂tδqþQkaðu ·∇δqÞþQkaðδq ·∇uÞ¼−∇δπþνΔδq; ð4Þ

where δπ ¼ π02 − π01 is the perturbation in the pressure field
(see its derivation in the Supplemental Material [25]). The
transverse Lyapunov exponent (TLE) is defined as

λ⊥ðkaÞ ≔ lim
T→∞

1

T
ln jδqðTÞj; ð5Þ

if the limit exists. A negative TLE, λ⊥ < 0, indicates
asymptotic linear stability of the DA manifold M, which
implies a successful DA process. By contrast, if the TLE is
positive, λ⊥ > 0, the DA manifold M is linearly unstable,
which implies a failure of the DA process. The TLE is an
ergodic quantity of the turbulent attractor, which character-
izes the average exponential growth or decay rate of the
norm of the perturbation along the solution trajectory
within M.
The TLEs λ⊥ðkaÞ explain the results of the numerical

experiments for the CDA in the NS turbulence shown in
Fig. 1(b). The numerical integration of the variational
equations (4) coupled with the NSEs (1) for u gives a
TLE λ⊥ðkaÞ for each fixed ka. Figure 2 shows the
normalized TLE λ⊥ðkaÞτ as a function of the normalized
wave number, kaη (refer to the Supplemental Material [25]
for details on the numerical methods and the convergence
of the TLEs). For kaη < 0.2, the TLEs are positive, λ⊥ > 0;
that is, the DA manifoldM is unstable. The TLE decreases
as ka increases and becomes negative for kaη > 0.2; that is,
M is stable. The change in stability of M at the critical
wave number k�a ≃ 0.2=η explains the results of the success
or failure of the DA process shown in previous studies
[7,8,10] and Fig. 1(b).
Reynolds-number dependence.—To study the Reynolds

number dependence, the normalized TLEs λ⊥τ for Re ¼
1400 are shown as blue open circles in Fig. 3. For reference,
the red circles denote the TLEs λ⊥ðkaÞτ for Re ¼ 570,
which are the same as those in Fig. 2. The critical wave
number k�aη, defined by the change in the sign of the TLEs,
increases with Re; k�aη is higher for Re ¼ 1400 than for
Re ¼ 570. To understand this Re dependence of the critical
wave number, we consider the asymptotic forms of the TLE
λ⊥ðkaÞ for both low and high wave numbers ka.
In the low-wave number limit, the TLE is reduced to the

maximal LE of the turbulent attractor. The variational
equations (4) describe the perturbation lying in the wave
number subspace higher than ka since there is no uncer-
tainty in the wave number subspace lower than ka. As ka

FIG. 2. Transverse Lyapunov exponents (TLEs) λ⊥ðkaÞ as a
function of the wave number ka normalized by the Kolmogorov
time τ and length η. The sign changes from positive to negative at
kaη ≃ 0.2, characterizing the success or failure of the DA process
shown in Fig. 1(b). The inset shows a schematic of the phase
space and DA manifold M, illustrating the successful DA
process, where the solution trajectory from the initial point
(the blue dot) approaches M.
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decreases, the perturbation dynamics become less confined.
At ka ¼ 0, the perturbation can evolve in the whole wave
number space; that is, there is no confinement. In this case,
Qka ¼ I (the identity operator), and the variational equa-
tions (4) are reduced to the standard variational equations of
the NSEs, under which the TLE reduces to the maximal LE
of the turbulent attractor, that is λ⊥ð0Þ ¼ λ.
The horizontal red dashed and blue dotted lines in Fig. 3

show the values of the maximal LEs λτ for Re ¼ 570 and
Re ¼ 1400, respectively. The TLEs for each Re number
converge to the normalized LEs as kaη → þ0. For
Re ¼ 570, the maximal LE is λτ ≃ 0.11, and it increases
with Re. These results agree with the recent findings [18–
20] claiming that the maximal LE increases with Re faster
than predicted by dimensional analysis, that is, λ ∝ 1=τ. In
particular, the lower inset of Fig. 4 of Boffetta and
Musacchio [18] shows that λτ is an increasing function
of Re, which is contrary to the conventional belief.
In the high-wave number limit of λ⊥ðkaÞ, the perturba-

tion is confined to the higher-wave number region where
the viscous term is dominant and ∂tδq ∼ νΔδq. This
suggests that λ⊥ðkaÞτ ¼ −ðkaηÞ2, as denoted by the gray
dashed curve in Fig. 3. The TLEs for different Reynolds
numbers collapse onto this curve in the high-wave number
region.
In summary, the TLEs λ⊥ðkaÞ shown in Fig. 3 connect

the maximal LEs λ at ka ¼ 0 with the curve −ðkaηÞ2 for the
high ka. In addition, the maximal LE, λ⊥ð0Þ ¼ λ, increases
with Re [18–20]. These findings indicate that an upward
shift of the graph λ⊥ðkaÞτ with increasing Re leads to an
increase in the critical wave number k�a.

Discussion and conclusion.—DA is becoming an increa-
singly significant tool in data-driven forecasting. How-
ever, little is known about the critical wave number k�,
which plays a key role in various DA methods for three-
dimensional turbulence [7,8,10–12]. This study establishes
a novel framework based on the chaos synchronization
theory [16,17], and it clarifies the critical wave number
based on the TLEs, which are the ergodic quantities of the
NSEs. Furthermore, considering the novel discovery of the
Reynolds number dependence of the maximal LE [18–20],
the relationship between the TLEs and the maximal LE
suggests that the critical wave number increases with Re.
Further study of the Reynolds number dependence of k�aη

is particularly interesting. Recent findings [18–20] suggest
that λ⊥ð0Þτð¼ λτÞ increases unboundedly with Re.
The critical wave number, k�aη, normalized by the mean
Kolmogorov scale η is expected to also increase unbound-
edly with Re. Solving this problem requires both a large-
scale computation of TLEs over a wide range of Reynolds
numbers and consideration of the spatiotemporal intermit-
tency beyond the standard Kolmogorov scaling argument,
which may be related to the singularity of the NSEs as
argued in [8].
Besides the phase-space dynamics studied in this Letter,

understanding the turbulent dynamics in the physical space
is also complementarily necessary. Remarkably, the critical
wave number, k� ¼ 0.2=η, has been identified in a context
unrelated to DA. Specifically, it was discovered in a recent
study of vortex stretching, which revealed a far dissipation
range for wave numbers exceeding k�, i.e., for k > k� [5].
In terms of the Kolmogorov-Richardson energy cascade,
the turbulent dynamics in the far dissipation range termi-
nate the cascade process. Although structures in the range
acquire the energy from larger scales, they cannot transfer it
to smaller ones but dissipate it there instead. This may
imply that they are slaving, or “synchronizing,” to larger-
scale structures and gives an interpretation of the small-
scale slaving dynamics in the DA context.
In addition to this insight, a key to the complete under-

standing of the slaving small-scale dynamics will be found
in the physical space structure of the covariant Lyapunov
vectors (CLVs) [26–30] corresponding to the LEs; these
are “unstable modes” of turbulent structures, such as
the hierarchy of antiparallel vortex tubes [4,5]. When
λ⊥ < 0, the variable q is uniquely determined by p; in
such a case, if we represent q ¼ ϕðpÞ, the graph, G½ϕ� ¼
fu∶u ¼ pþ ϕðpÞg, may correspond to the inertial mani-
fold [31,32] of the three-dimensional NSEs. TLE will be
one of the fundamental tools for analyzing high-dimen-
sional chaotic dynamical systems with hierarchical spatio-
temporal scales; therefore, it is crucial, from a viewpoint of
mathematical physics, to provide rigorous proofs for the
existence of the TLE λ⊥ðkaÞ and its smooth variation with
ka, as an extension of the Oseledets theorem.

FIG. 3. Reynolds-number dependence of TLEs. The normali-
zation is the same as in Fig. 2. The red solid and blue open circles
represent the normalized TLEs for Re ¼ 570 and Re ¼ 1400,
respectively. The horizontal red dashed and blue dotted lines
indicate the values of the normalized maximal LEs λτ for Re ¼
570 and Re ¼ 1400, respectively. The gray dashed curve corre-
sponds to λ⊥ðkaÞτ ¼ −ðkaηÞ2, where the viscous term determines
the perturbation dynamics.
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The small-scale dynamics and synchronization can relate
to the key concepts in turbulence research, such as
unpredictability, energy cascade, intermittency, singularity,
and inertial manifold. Furthermore, future studies based on
our DA approach to small-scale turbulence may also
influence data-driven methods [15,33–35]. For example,
while this Letter focuses on linear stability characterized by
the TLEs, nonlinear stability of the DA manifoldM can be
useful for DA research, such as superexponential conver-
gence of nonlinear CDA algorithm for the two-dimensional
NSEs [36]. Disentangling the above relationships based on
our theoretical framework will provide new insights into
the NS turbulence, leading to novel data-driven methods,
including DA algorithms.
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