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We present a complete basis to study gauged curvature-squared supergravity in five dimensions. We
replace the conventional ungauged Riemann-squared action with a new log invariant, offering a
comprehensive framework for all gauged curvature-squared supergravities. Our findings address
long-standing challenges and have implications for precision tests in the AdS=CFT correspondence.
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Introduction.—Twenty-six years after its discovery, the
AdS=CFT correspondence has entered a new era in which
precision tests beyond the leading order have become
increasingly important, owing to developments in both
field theory and gravity. On the one hand, integrability
and localization techniques allow one to compute the
observables in superconformal field theories (SCFTs)
exactly at finite couplings. On the other hand, the develop-
ment of superconformal tensor calculus and superspace
techniques—see the reviews [1–4]—in conjunction with
the computational capabilities offered by computer algebra
programs has significantly advanced the construction of
exact, off-shell higher-derivative supergravity models.
In this Letter, we present all gauged curvature-squared

supergravity invariants in five dimensions based on the
off-shell dilaton Weyl multiplet. After going on shell,
our invariants describe the most general four-derivative
corrections to the five-dimensional minimal gauged super-
gravity, which is a universal sector to all string compacti-
fications preserving at least eight supercharges. The gauged
aspect is necessary to accommodate a supersymmetric anti–
de Sitter (AdS) solution and, thus, is of broad interest in
holography. In particular, due to recent advancements in
AdS black hole microstate counting [5–12] using the dual
CFT, a precise matching between the gravity and CFT
results at the next-to-leading order clearly requires the
knowledge of the complete curvature-squared supergravity
actions. Previous works have made attempts to compute
four-derivative corrections based on partial results in the

literature, and certain assumptions were made. Using our
full results, it can be shown that, in fact, some of the
assumptions are invalid, thus finally furnishing the stage for
new, next-to-leading-order analyses on the gravity side of
the AdS=CFT correspondence.
The construction of gauged curvature-squared invariants

is notoriously hard, as opposed to their ungauged
counterparts, which have been fully known for more than
a decade [13–15]. The primary difficulty stems from the
absence of a straightforward transition from ungauged to
gauged theories. In fact, the complete basis of invariants
must be constructed from completely different starting
points. For instance, certain ungauged curvature-squared
models are attainable through the application of super-
conformal tensor calculus, utilizing the dilaton Weyl
multiplet. In contrast, their gauged counterparts necessitate
the use of a modified version of the same multiplet [16],
which has an entirely different field content and trans-
formation rules. Furthermore, the deformation necessary
for the construction of gauged supergravity models renders
certain established higher-derivative supergravity building
techniques impractical, thus further complicating the task.
In fact, it takes an interplay between superconformal tensor
calculus [16] and superspace techniques [17], together with
a series of new, daunting computations finalized only in the
results presented here, to yield the complete set of gauged
curvature-squared invariants.
This Letter aims to explicitly show that the past challenges

can be overcome by changing the basis of curvature-squared
supergravities, which previously employed the Weyl tensor
squared, Riemann tensor squared, and Ricci scalar squared
as fundamental building blocks. We demonstrate that
by replacing the Riemann-squared action with the log
invariant, in which the leading term comes with the Ricci
tensor squared, it is possible to explicitly establish all gau-
ged curvature-squared supergravities in five dimensions.
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The outcomes presented in our Letter mark a signifi-
cant advancement, paving the way to a complete study of
physical results beyond the leading supergravity approxi-
mation in five dimensions. This development holds
particular promise for precision tests of the AdS5=CFT4

correspondence. In this context, we derive the anomaly
coefficients in the dual SCFT4, which apparently depend on
all curvature-squared couplings.
Construction of the invariants.—We start by introducing

the field content of the standard Weyl multiplet of con-
formal supergravity in five dimensions [18]. Our notation
and conventions correspond to that of [18]. We denote the
spacetime indices by μ; ν;…, Lorentz indices by a; b;…,
SU(2) indices by i; j;…, and spinor indices by α; β;…. The
multiplet is described by a set of independent gauge fields:
the vielbein eaμ, the gravitino ψμ

i
α, the SU(2) gauge fields

Vij
μ , and a dilatation gauge field bμ. The other gauge fields

associated with the remaining symmetries, including the
spin connectionωab

μ , the S-supersymmetry connection ϕμ
i
α,

and the special conformal connection faμ, are composite
fields; i.e., they are determined in terms of the other fields
by imposing certain curvature constraints. The standard
Weyl multiplet also contains a set of matter fields: a real
antisymmetric tensor Tab, a fermion χiα, and a real scalarD.
A more detailed discussion of the superconformal trans-
formations of the various fields can be found, e.g.,
in [16,18].
Below, we will make use of a variant multiplet of

conformal supergravity, known as the gauged dilaton
Weyl multiplet [16,19]. For this multiplet, the independent
gauge fields remain the same as the standardWeylmultiplet,
but the matter content is replaced with fσ; Cμ; Bμν; Lij;
Eμνρ; N;ψ i;φig. This is obtained by coupling the standard
Weyl multiplet to on-shell vector and linear multiplets.
The vector multiplet consists of a scalar field σ, the gaugino
ψ i
α, an Abelian gauge vector Cμ with field strength

Gμν ¼ 2∂½μCν�, and an SU(2) triplet of auxiliary fields
Yij ¼ YðijÞ. The linear multiplet contains an SU(2) triplet
of scalars Lij ¼ LðijÞ, a gauge three-form Eμνρ, a scalar N,
and an SU(2) doublet φi

α. The bosonic matter fields of the
vector and the standardWeyl multiplet are then expressed as
follows [16]:

Yij ¼ −
g
2
σ−1Lij þ ft;

Tab ¼
1

8
σ−1Gab þ

1

48
σ−2ϵabcdeHcde þ ft;

D ¼ 1

4
σ−1∇a∇aσ þ 1

8
σ−2ð∇aσÞ∇aσ −

1

32
R

−
1

16
σ−2GabGab −

�
26

3
Tab − 2σ−1Gab

�
Tab

þ g
4
σ−2N þ g2

16
σ−4L2 þ ft; ð1Þ

where “ft” stands for omitted fermionic terms and
Habc ¼ eμaeνbe

ρ
cHμνρ denotes the three-form field strength

Hμνρ ≔ 3∂½μBνρ� þ 3
2
C½μGνρ� þ 1

2
gEμνρ. In the above, the

covariant derivative is denoted by

∇a ¼ eμað∂μ − ωbc
μ Mbc − bμD − Vij

μUijÞ; ð2Þ

with Mab, D, and Uij being the Lorentz, dilatation, and
SU(2) generators, respectively. The dilatation connection bμ
is pure gauge and will be set to zero throughout. The
mapping (1) allows us to easily convert every invariant
involving a coupling to the standard Weyl multiplet to that
written in terms of the gauged dilaton Weyl multiplet. The
ungauged map and the models can simply be obtained by
setting g ¼ 0 in (1). In this case, the fields of the linear
multiplet decouple from the map (1), and the multiplet
reduces to the ungauged dilaton Weyl multiplet with
32þ 32 off-shell degrees of freedom [18,21].
In the superconformal tensor calculus, the so-called

BF action principle plays a fundamental role in the
construction of general supergravity-matter couplings;
see Refs. [17,18,21–25] for the 5D case. It is based on
an appropriate product of a linear multiplet with an Abelian
vector multiplet:

e−1LBF ¼ AaEa þ ρN þ YijLij þ ft: ð3Þ

Here, we use fρ; Aμ;Yij; λiαg to denote the field content in
an arbitrary vector multiplet, and the bosonic part of the
constrained vector Ea is related to the three-form gauge
field Eabc via Ea ¼ −ð1=12Þϵabcde∇bEcde. In any con-
struction that involves composite expressions for the fields
of the linear multiplet in terms of the vector multiplet, the
BF action yields a vector-coupled action in the (gauged)
dilaton Weyl background. Using the off-shell map given
in [15], a vector multiplet can be identified with fields in the
gauged dilaton Weyl multiplet as

Yij →
1

4
iσ−1ψ̄ iψ j −

g
2
σ−1Lij; ρ → σ;

Aμ → Cμ; λi → ψ i; ð4Þ

which gives rise to off-shell models that are purely
expressed in terms of the fields of the (gauged) dilaton
Weyl multiplet. By appropriately choosing primary
composite linear multiplets, Eq. (3) becomes the building
block for constructing various curvature-squared invariants.
In the superconformal approach, the off-shell formu-

lation of minimal 5D supergravity can be achieved by
coupling the standard Weyl multiplet to two off-shell
conformal compensators: a vector multiplet and a linear
multiplet. Within this setup, supersymmetric completions
of the Weyl tensor squared and Ricci scalar squared
were constructed in [26] and [14], respectively. The
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Weyl tensor-squared invariant is based on a composite
linear multiplet comprised solely of standard Weyl multi-
plet fields. To construct the Ricci scalar-squared invariant,
one starts by defining a composite vector multiplet in terms
of a linear multiplet. This composite vector multiplet is then
substituted into the vector multiplet action obtained
using (3).
While the Weyl tensor-squared and Ricci scalar-squared

actions based on the dilaton Weyl multiplet were presented
as ungauged models [14], they can simply be gauged by
using the maps (1) and (4). At this point, it is worthwhile to
mention that the on-shell results for these gauged actions
differ from those presented by [27]. The reason is that
Ref. [27] assumes that the map between the standard Weyl
and the dilatonWeyl multiplet is not modified in the gauged
case. However, as shown in [16] and presented as in Eq. (1),
these expressions are indeed deformed. For completeness,
we present the off-shell gauged results in Supplemental
Material [28].
The third invariant necessary to obtain all the curvature-

squared models in five dimensions was constructed as the
Riemann-squared invariant in the ungauged dilaton Weyl
basis in [13]. However, this model does not refer to the
standard Weyl multiplet; hence, the prescription to obtain
gauged models cannot be applied. Furthermore, the con-
struction methodology cannot be extended to the gauged
dilaton Weyl multiplet.
Alternatively, a third independent, locally superconfor-

mal invariant containing the Ricci tensor-squared term can

be constructed [17,29], which provides the correct basis to
study gauged curvature-squared supergravity, as we shall
discuss momentarily. In this case, the lowest component of
the composite linear multiplet is given by the field Lij

Log.
This is obtained by making use of the standard Weyl
multiplet and by acting with six Q-supersymmetry trans-
formations on the field log ρ, with ρ being the lowest
component of a compensating vector multiplet [30]. The
rest of the composite “log multiplet” is then obtained by
acting with up to two more Q-supersymmetry transforma-
tions on Lij

Log. Because of the complexity of computing up
to eight supersymmetry transformations, the explicit form
of the log multiplet, including all fermionic terms, has been
obtained only recently with the aid of the CADABRA

software [31,32]. These lengthy results will be published
elsewhere [33]; see also [29,34] for the complete analysis
of the gauged supergravity case. Inserting the resulting
composite multiplet into (3) yields the explicit form of a
new “log invariant” which will be presented in [33] in the
standard Weyl basis. Then, the log invariant in the gauged
dilatonWeyl background can be obtained by employing the
map (1) and (4). For the purpose of this Letter, it suffices to
present its bosonic sector in the gauge

σ ¼ 1; bμ ¼ 0; ψ i ¼ 0: ð5Þ

The gauged log invariant in the dilaton Weyl background,
which includes a Ricci-squared term, reads

e−1LLog ¼ −
1

6
RabRab þ 1

24
R2 þ 1

6
RabG2

ab þ
1

3
RHabGab −

4

3
RabHacGb

c −
1

3
RH2 −

1

12
ϵabcdeCaV

ij
bcVdeij

þ 1

6
VabijVabij − 2ðH2Þ2 þ 16

3
H2

abH
acGb

c −
4

3
H2HabGab þ 2

3
HabHcdðGabGcd − 2GacGbdÞ

þ 2

3
H2G2 −

4

3
H2abG2

ab −
1

3
HabGabG2 þG2

abH
acGb

c −
1

48
ðG2Þ2 − 1

24
G4 −

1

6
∇cGac∇bGab

þ 2∇aHbc∇½aHbc� þ 1

48
ϵabcde∇fGefð4Hab −GabÞð4Hcd −GcdÞ

þ g
6

�
RN − 4NHabGab − 2NG2 þ Vij

abLijðGab þ 4HabÞ þ 12NH2 − 6∇a∇aN

�

−
g2

24

�
2RL2 − L2ðG2 − 4GabHab − 24H2Þ þ 4N2 þ 6∇aLij∇aLij

�
þ 2

3
NL2g3 þ 5

24
L4g4; ð6Þ

where Vij
ab ¼ 2∂½aV

ij
b� − 2Vkði

½a V
jÞ
b�k. Furthermore, we have used the following notations: Hab ¼ −ð1=12ÞϵabcdeHcde,

H2 ¼ HabHab, G2 ¼ GabGab, H2
ab ≔ Hc

aHbc, G2
ab ≔ Gc

aGbc, G4 ¼ G2abG2
ab, and H4 ¼ H2abH2

ab.
Note that the supersymmetric Riemann-squared invariant can be obtained by taking the following linear combination of

the ungauged Weyl-squared invariant presented in [13] and setting g ¼ 0 in the log invariant (6):

LRiem2 ¼ LWeyl2 þ 2LLogjg¼0: ð7Þ

The resulting action is identical to the one presented in [13] up to total derivatives.
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Going on shell and dual CFT.—Now let us study a
certain linear combination of the Einstein-Hilbert and all
three curvature-squared invariants

ð16πGÞL2∂þ4∂ ¼ LEH þ λ1LWeyl2 þ λ2LLog þ λ3LR2 ; ð8Þ

whereG is Newton’s constant and all the invariants are given
in the gauged dilatonWeylmultiplet background.LWeyl2 and
LR2 , respectively, denote the Weyl tensor-squared and Ricci
scalar-squared actions which are obtained by employing
the maps (1) and (4) in the standard Weyl multiplet results
of [14]. Their explicit form is not crucial here, but they are
given in Supplemental Material [28] for the reader’s con-
venience. The two-derivative Lagrangian LEH is obtained
by using the linear multiplet action in the standard Weyl
multiplet basis [15,16] and the sequential use of themaps (1)
and (4). Note that, in this section, we rescaled the
Lagrangians such that the coefficient of their leading
curvature-squared term is normalized to unity. To go on
shell, we fix the gauge according to (5) and break SU(2)
down to U(1) by choosing

Lij ¼
1ffiffiffi
2

p δijL; Vij
a ¼ V 0ij

a þ 1

2
δijVa: ð9Þ

Consequently, the two-derivative Lagrangian becomes

e−1LEH¼L

�
R−

1

2
GabGabþ4HabHabþ2V 0ij

a V 0a
ij

�

þL−1
∂aL∂aL−2L−1EaEa−2

ffiffiffi
2

p
EaVa−2N2L−1

−4gCaEa−2gNL−4gN−
1

2
g2L3þ2g2L2: ð10Þ

From the total Lagrangian (8), several auxiliary fields can be
solved from their field equations up to OðλiÞ:

N ¼ −
1

2
gLð2þ LÞ þOðλiÞ;

Ea ¼ OðλiÞ; V 0ij
a ¼ OðλiÞ: ð11Þ

To arrive at the five-dimensional gauged minimal super-
gravity, we first dualize Bμν to a new 1-form gauge field C̃μ

following the procedure in [15,16]. We then truncate the
model consistently by imposing

L ¼ 1þOðλiÞ; C̃a ¼ Ca þOðλiÞ: ð12Þ
Following (12), the field equation of Eabc now implies

Va ¼ −
3ffiffiffi
2

p gCa þOðλiÞ: ð13Þ

Plugging (11)–(13) back to the total Lagrangian (8), one
obtains the on-shell theory up to first order in λi. It is

important to note that, in the procedure outlined above,
the OðλiÞ terms arising from substituting (11)–(13) to the
two-derivative action either vanish (proportional to the
leading-order equations of motion of auxiliary fields) or
can be removed by field redefinitions [35]. To recover
the standard convention of minimal supergravity, we
rescale the graviphoton and the U(1) coupling according
toCa → ð1= ffiffiffi

3
p ÞCa, g →

ffiffiffi
2

p
g. To conclude, following [36],

the resulting Lagrangian can be further simplified by
redefining the metric and the U(1) gauge field. Eventually,
the on-shell model is recast in the form below:

ð16πGÞe−1L2∂þ4∂ ¼ c0Rþ 12c1g2 −
1

4
c2GabGab

þ 1

12
ffiffiffi
3

p c3ϵabcdeCaGbcGde

þ λ1LGBjonshell; ð14Þ

where the various coefficients are

c0 ¼ 1þ
�
28

3
λ1 − 20λ2 − 4λ3

�
g2;

c1 ¼ 1þ
�
50

9
λ1 −

28

3
λ2 þ

52

3
λ3

�
g2;

c2 ¼ 1þ
�
64

9
λ1 −

92

3
λ2 −

76

3
λ3

�
g2;

c3 ¼ 1 − 12ðλ1 þ 3λ2 þ 3λ3Þg2; ð15Þ

and the on-shell Gauss-Bonnet invariant is given by

LGBjonshell ¼ RabcdRabcd − 4RabRab þR2 þ 1

8
G4

−
1

2
WabcdGabGcd þ 1

2
ffiffiffi
3

p ϵabcdeCaRbc
fgRdefg;

ð16Þ

where Wabcd is the Weyl tensor. This on-shell action is
consistent with the generic result presented in [37] for the
proper choice of parameters. Based on the on-shell model
(14) we find that the AdS5 radius receives corrections from
the higher-derivative terms and is given by

l ¼ g−1
�
1þ 8

9
g2λ1 −

16

3
g2λ2 −

32

3
g2λ3

�
: ð17Þ

The effective Newton’s constant from Eq. (14) is then

Geff ¼ Gþ G

�
−
28

3
λ1 þ 20λ2 þ 4λ3

�
g2: ð18Þ

The AdS5 vacuum preserves maximal eight supercharges
[38,39], and the dual field theory should be aD ¼ 4,N ¼ 1
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CFT. Utilizing (17) and (18), the a and c Weyl anomaly
coefficients of the dual CFT can be obtained via the standard
holographic renormalization procedure [40,41]:

a ¼ π

8g3G
−
9πðλ2 þ λ3Þ

2gG
;

c ¼ π

8g3G
þ πð2λ1 − 9λ2 − 9λ3Þ

2gG
; ð19Þ

using which one finds the results above are consistent with
R-symmetry anomalywhose coefficients are related to those
of the Weyl anomaly via [42,43]

5a − 3c ¼ πc3
4g3G

; a − c ¼ −
πλ1
gG

: ð20Þ

Conclusions and outlook.—In this Letter, we provide the
correct and complete basis to study curvature-squared
gauged supergravity in five dimensions. Our new results
show explicitly that in the ungauged case, only the Weyl-
squared invariant is relevant in computing physical quan-
tities as the rest can be redefined away, generalizing the
nonrenormalization theorems for D ¼ 4, N ¼ 2 [44].
Based on the new results, we successfully computed the
anomaly coefficients governing dual four-dimensional
SCFTs. As four-dimensional SCFTs are characterized by
two anomaly coefficients, one would naturally anticipate
the emergence of only two independent linear combina-
tions among the three four-derivative couplings. Indeed,
our analysis confirms this expectation, with λ2 and λ3
consistently appearing together in the anomaly coefficients
as the combination λ2 þ λ3. However, when examining the
on-shell action (14), it becomes evident that λ2 and λ3 do
not share this combination. Indeed, it can be shown that the
log invariant and the Ricci scalar invariant both contribute
to the thermodynamics of general non-Bogomol’nyi-
Prasad-Sommerfield (BPS) AdS black holes, and the λ2,
λ3 dependence cannot be arranged into the combination
λ2 þ λ3 [45] as in some (BPS) quantities [37,46–48].
We can also generalize the results by coupling multiple

vector multiplets which also enjoy an off-shell formulation.
Given the simple form the 6D ungauged Gauss-Bonnet
invariant [49–51] and the relation between dilaton Weyl
multiplets in these two dimensions [13], it may be feasible
to reformulate the 5D Gauss-Bonnet invariant into a
more elegant expression that facilitates the construction
of intriguing solutions. For instance, the nonexistence of
supersymmetric AdS5 black ring solutions in the two-
derivative theory [52] raises the intriguing question of
whether this situation changes in the presence of higher-
derivative interactions. Our new invariants enable the
computation of corrections to the entropy of ð1=16Þ-BPS
black holes [38,39,53–55], thereby extending the precision
test of black hole microstate counting to the next-to-leading
order. It is also interesting to extend the recently proposed

equivariant localization [56,57] beyond the leading two-
derivative cases.
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