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We derive an entropy formula satisfied by the ground states of 1þ 1D conformal field theories. The
formula implies that the ground state is the critical point of an entropy function. We conjecture that this
formula may serve as an information-theoretic criterion for conformal field theories, which differs from the
conventional algebraic definition. In addition to these findings, we use the same proof method to extract the
six global conformal generators of the conformal field theory from its ground state. We validate our results
by testing them on different critical lattice models, with excellent agreement.
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Introduction.—Quantum entanglement and quantum in-
formation have played important roles in the study of
quantum matter. For 2þ 1D gapped phases, this includes
topological entanglement entropy [1,2], entanglement
spectrum [3], and the recent work on chiral central charge
[4] and minimal total central charge [5]. For 1þ 1D
conformal field theories (CFTs), the entanglement entropy
[6–8] of the ground state is related to the central charge.
These tools are useful to distinguish quantum phases ana-
lytically and numerically.
More ambitiously, one may wonder if the reverse holds,

namely, could there be entanglement conditions that are
satisfied and only satisfied by ground states for certain
quantum phases? One proposal is given by Shi, Kato, and
Kim [9] where they stated two conditions that are conjec-
tured to be satisfied and only satisfied by the ground states of
topological quantum field theories [10]. Remarkably, using
the two conditions, they are able to derive many known
properties of 2þ 1D topological orders. Another nice
feature is that because the two conditions only involve
the entropies of local regions, the conditions can be checked
easily. This program is called entanglement bootstrap and
can be applied to other settings, including gapped domain
walls [11] and higher dimensions [12].
Given the success of entanglement bootstrap for gapped

topological orders, one may wonder if a similar set of
entropy conditions exists for gapless states. In this work, we
propose a new set of ultraviolet (UV)-independent entropy
conditions that apply to the ground states of 1þ 1D unitary
CFTs. The conditions additionally hold for 1þ 1D gapped

phases at RG fixed points. In the spirit of entanglement
bootstrap, we conjecture that these conditions characterize
the ground states of 1þ 1D RG fixed points with Lorentz
symmetry [13].
Let A, B,C be three consecutive intervals; see Fig. 1. Our

essential observation is that the ground state of a 1þ 1D
unitary CFT jψi satisfies

KΔ ∝ I and KΔjψi ∝ jψi ð1Þ

[14,15] where

KΔ ≔ ðKAB þ KBCÞ − ηðKA þ KCÞ
− ð1 − ηÞðKB þ KABCÞ ð2Þ

and KX ≔ − log ρX [17] is the entanglement Hamiltonian
of the reduced density matrix ρX ≔ TrX̄jψihψ j, I is the
identity operator, and η is the cross ratio of the intervals.
Moreover, when the central charge c is known, the propo-
rtionality constant is given by

KΔ ¼ c
3
hðηÞ and KΔjψi ¼

c
3
hðηÞjψi ð3Þ

FIG. 1. (a) Three consecutive intervals on an infinite system
with the corresponding cross ratio η. (b) Three consecutive
intervals on a circle with circumference L. Here, xij ≔ xj − xi
denotes the distance between xi and xj.
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where hðηÞ ≔ −η log η − ð1 − ηÞ logð1 − ηÞ is the binary
entropy function. Finally, we observe that Eq. (1) is the
condition for jψi to be a critical point of the following
function:

SΔðjψiÞ ≔ ðSAB þ SBCÞ − ηðSA þ SCÞ
− ð1 − ηÞðSB þ SABCÞ ð4Þ

where SX ≔ SðρXÞ is the von Neumann entanglement
entropy between X and X̄. The function is non-negative
because it is a convex combination of two non-negative
quantities, by weak monotonicity SABþSBC−SA−SC≥0
and strong subadditivity SABþSBC−SB−SABC≥0 [18,19].
All the statements above can be extended to the ground
state on a finite circle and the thermal state on an
infinite line.
The formulas discussed above were derived in continuum

CFT. In many physical realizations, CFT arises as an
approximation to a lattice model. Importantly, we show
numerically that the equations hold approximately for various
lattice models and the error jKΔjψi − ðc=3ÞhðηÞjψij decays
as the number of sites increases (as a power law).
Therefore, after obtaining the basic formulas, we explore

their implications on states supported on a discrete lattice, by
the following device: divide up the spatial direction into a
collection of line segments, and regard each segment as a
site of a lattice model with infinite-dimensional local
Hilbert space. We thereby identify new equations that could
potentially hold for lattice models with finite-dimensional
localHilbert space,which can then bevalidated numerically.
Specifically, we express the entanglement Hamiltonians of
intervals and the six global conformal generators as a combi-
nation of one-site and two-site entanglement Hamiltonians
of the CFT ground state. This has two important implica-
tions. First, when the state satisfies the entropy formula, the
six global conformal generators have the expected scaling
properties under real-space RG. This provides evidence that
a state satisfying the entropy formula enjoys conformal
symmetry. Second, the result yields an algorithm that can
reconstruct the CFT local Hamiltonian from theCFT ground
state. This is remarkable since the parent Hamiltonian
construction [20] that applies tomatrix product states cannot
be applied to gapless phases due to their long-range
correlations. This algorithm offers an alternative method
for recovering the local Hamiltonians from states near RG
fixed points, including gapped and gapless phases. This
result corroborates the general principle that a single
representative wave function contains all the universal data
about a state of matter.
We want to highlight an implicit theme of this work,

which aims to go beyond the traditional algebraic formu-
lation of CFT and provide an alternative analytic formu-
lation. Typically, CFTs are defined using algebras with
equalities, which do not allow for the discussion of
approximate CFTs. However, many examples exist that

we would like to categorize as approximate CFTs, such as
QFTs that are slight perturbations of CFTs or critical lattice
models that are CFTs in the IR limit. Because these models
have different Hilbert spaces, finding a criterion that applies
to all cases is challenging. To address this issue, we utilize
the entanglement entropy and entanglement Hamiltonian,
which are agnostic to the Hilbert space. We propose to
define approximate CFTs as systems whose ground state
approximately satisfies Eq. (1). Further research is needed
to determine the usefulness of this proposal.
CFTs and their entanglement properties.—Conformal

field theories are field theories with scale invariance. Such
scale invariance often implies a larger invariance called the
conformal symmetries, which include transformations that
locally look like rescalings. These conformal symmetries
appear naturally in many physical systems, including the
fixed points of the RG flow and the critical points of
statistical models.
For 1þ 1D CFT, the entanglement entropy [8] and the

entanglement Hamiltonian (EH) [21] of the ground state on
an interval ½x1; x2� are known to be

S½x1;x2� ¼
c
3
log

x2 − x1
ϵ

ð5Þ

and

K½x1;x2� ¼ 2π

Z
x2

x1

dx
ðx − x1Þðx2 − xÞ

x2 − x1
T00ðxÞ þ const ð6Þ

where c is the central charge, ϵ is the uniformUV cutoff, T is
the stress-energy tensor, and const is a number that depends
on the UV cutoff ϵ. These two equations are the key to
showing the main results. As we will see, even though both
equations suffer from UV divergences, the combinations in
Eqs. (1) and (3) are free from UV divergences.
Derivation of the main results.—We first show Eqs. (1)

and (3) for the ground state of a 1þ 1D CFT on an infinite
system. Then we show the equivalence of Eq. (1) to the
critical point condition of SΔ defined in Eq. (4). Let
A ¼ ½x1; x2�, B ¼ ½x2; x3�, and C ¼ ½x3; x4� be three con-
secutive intervals. For convenience, we define the function
f½x0;x00�ðxÞ ¼ ½ðx − x0Þðx00 − xÞ=x00 − x0�1½x0;x00� where 1½x0;x00�
is the indicator function. By Eq. (6),

ðKAB þ KBCÞ − ηðKA þ KCÞ − ð1 − ηÞðKB þ KABCÞ

¼
Z

∞

−∞
dx½ðfAB þ fBCÞ − ηðfA þ fCÞ

− ð1 − ηÞðfB þ fABCÞ�T00ðxÞ þ const: ð7Þ

A straightforward calculation shows ðfAB þ fBCÞ −
ηðfA þ fCÞ − ð1 − ηÞðfB þ fABCÞ ¼ 0 from which Eq. (1)
follows.
To obtain the ratio in Eq. (3), we multiply hψ j on both

sides. Because hψ jKAjψi ¼ SA, the left-hand side becomes
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ðSAB þ SBCÞ − ηðSA þ SCÞ − ð1 − ηÞðSB þ SABCÞ which
evaluates to ðc=3ÞhðηÞ using Eq. (5).
Now we show that Eq. (1) is precisely the condition for

vanishing variation of SΔ with respect to the state. Recall
that jψi is a critical point if the gradient is 0 subject to
ðhψ jþhdψ jÞðjψiþjdψiÞ¼1, i.e., hdψ jψi þ hψ jdψi ¼ 0.
To compute the gradient of SΔ ¼ ðSAB þ SBCÞ − ηðSA þ
SCÞ − ð1 − ηÞðSB þ SABCÞ we use the first-order derivative
of the entanglement entropy:

dSXðjψiÞ ¼ hdψ jKXjψi þ hψ jKXjdψi ð8Þ

as reviewed in [16]. Therefore, the critical point jψi has

dSΔ ¼ hdψ jKΔjψi þ hψ jKΔjdψi ¼ 0 ð9Þ

for all jdψi satisfying hdψ jψi þ hψ jdψi ¼ 0. Recall KΔ ¼
ðKABþKBCÞ− ηðKAþKCÞ− ð1− ηÞðKBþKABCÞ. This is
equivalent to KΔjψi ∝ jψi in Eq. (1). Note that the left
equation in Eq. (1), KΔ ∝ I, does not follow from KΔjψi ∝
jψi and the critical point condition in general, but does
follow under certain assumptions that will be explained
later in this section.
More generally, the result can be extended to the ground

state on a finite circle and the thermal state on an infinite
line. In both cases, the entanglement entropy and the
entanglement Hamiltonian are known [8,21], so the proof
strategy still works. The difference is to replace the cross-
ratio η with the effective cross-ratio ηeff where ηLeff ¼
½sinðπx12=LÞ sinðπx34=LÞ= sinðπx13=LÞ sinðπx24=LÞ� for
the ground state on a circle of length L and ηβeff ¼
½sinhðπx12=βÞ sinhðπx34=βÞ= sinhðπx13=βÞ sinhðπx24=βÞ�
for the thermal state on an infinite line of inverse temper-
ature β.
We now discuss the subtle relation between the operator

equation KΔ¼ðc=3ÞhðηÞ and the vector equation KΔjψi ¼
ðc=3ÞhðηÞjψi. We first present an argument that shows their
equivalence for quantum field theories, then discuss the
difference in their approximate versions. It is clear that the
operator equation implies the vector equation and typically
the other way does not hold for finite dimensional Hilbert
spaces. One extreme example for finite dimensional Hilbert
spaces is that KX ¼ − log ρX could have singularities when
ρX has zero eigenvalues, while KXjψi is still well defined
with continuity, because limλ→0 λ log λ ¼ 0. On the other
hand, for quantum field theories, due to the Reeh-Schlieder
theorem [22], jψi∈HABCD is cyclic, which means ODjψi
is dense in HABC for OD supported on D. Because KΔ is
only supported on HABC, KΔ and OD commute, and we
have KΔODjψi ¼ ðc=3ÞhðηÞODjψi. SinceODjψi is dense,
this implies the operator equation KΔ ¼ ðc=3ÞhðηÞ.
In the approximate case, one might hope that KΔ ≈

ðc=3ÞhðηÞ in the operator norm and KΔjψi ≈ ðc=3ÞhðηÞjψi
in the vector norm. Numerically, we observe that the
approximate operator equation does not hold, while the

approximate vector equation holds. This suggests that the
vector equation is more valid because it is stable against
perturbation. Nevertheless, we suspect that the operator
equation remains stable under a different norm which
requires further investigation.
Local-to-global implications.—Now we apply the rela-

tion Eq. (1) to intervals with integer-valued endpoints
which can be associated with a lattice model. The benefit
of having a lattice model is that it allows for concrete
numerical verifications. To simplify the presentation, we
define the reduced EH as K̃X ≔ KX − hψ jKXjψi, which is
the EH shifted by a constant so that hψ jK̃Xjψi ¼ 0. This
removes the constant term in Eq. (6), which implies that
K̃Δ ¼ 0. The reduced EH of an interval ½a; b� is denoted as
K̃½a;b�. In the following discussion, we only consider
intervals with a; b∈Z, so that they can be associated with
a lattice model. The corresponding lattice model regards
each interval of length 1, ½a; aþ 1�, as a single site [23].
Therefore, the interval ½a; b� corresponds to b − a sites.
From now on, we refer to the reduced EH simply as EH.
The EH of any interval can be written as a sum of one-

site and two-site EHs, using Eq. (1) recursively [16]. For an
interval of length n,

K̃½0;n� ¼
X∞
j¼−∞

f2ðjþ 1ÞK̃½j;jþ2� þ f1

�
jþ 1

2

�
K̃½j;jþ1� ð10Þ

where f2ðxÞ ¼ ½2xðn − xÞ=n�1½0;n�, f1ðxÞ ¼ ½−2xðn − xÞþ
3
2
=n�1½0;n�, and 1½0;n� is the indicator function. This could be

viewed as a solution to the quantum marginal problem for
CFTs, where the Petz recovery map does not apply.
Remark 1.—The decomposition of EH into a sum of one-

site and two-site EHs is similar to Eq. (6) in field theory,
where EH is a sum of local terms T00ðxÞ. All different ways
to decompose K̃½0;n� lead to the same expression. This
nontrivial property implies certain consistency relations
between K̃Δ ¼ 0 across different choices of A, B, C.
The state contains the universal data.—The same logic

that leads to Eq. (1) implies that the CFT Hamiltonian
(and hence all of the CFT data) can be extracted from the
ground state. In fact, the same is true of all six global
conformal generators H;P;D;M10; C0; C1 which are the
Hamiltonian, momentum, dilatation, boost, and special
conformal generators. We first find their corresponding
expressions for CFT ground states when Eq. (6) applies.
Because H ¼ R

∞
−∞ dxT00ðxÞ, M10 ¼

R
∞
−∞ dxxT00ðxÞ, C0 ¼R

∞
−∞ dxx2T00ðxÞ, applying Eq. (6), we have

H ¼ 1

π

X∞
j¼−∞

K̃0
½j;jþ2�; ð11Þ

M10 ¼
1

π

X∞
j¼−∞

ðjþ 1ÞK̃0
½j;jþ2�; ð12Þ
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C0 ¼
1

π

X∞
j¼−∞

�
ðjþ 1Þ2K̃0

½j;jþ2� −
1

2
K̃½j;jþ1�

�
; ð13Þ

where K̃0
½j;jþ2� ¼ K̃½j;jþ2� − 1

2
K̃½j;jþ1� − 1

2
K̃½jþ1;jþ2� is intro-

duced to simplify the equations. The remaining three
generators can also be reconstructed [16] from one-site
and two-site EHs using P ¼ i½M10; H�, D ¼ ði=2Þ½C0; H�,
and C1 ¼ i½C0;M10�. See [16] for comments on these
expressions.
Having defined the six conformal generators using one-

site and two-site EHs, we now show that they have the
expected scaling from real-space RG. We first study the
case of the Hamiltonian H. To perform real-space RG,
we consider a new system which blocks two sites in the
original system into one site. We then compare the two
reconstructed Hamiltonians using Eq. (11), which are

H1 ¼
1

π

X∞
j¼−∞

K̃½j;jþ2� − K̃½j;jþ1�; ð14Þ

H2 ¼
1

π

X∞
j¼−∞

K̃½2j;2jþ4� − K̃½2j;2jþ2�: ð15Þ

Note that the state we used for the reconstructions is the
same. The only difference is the size of the block. By
expanding the four-site EH as a sum of one-site and two-site
EH using Eq. (33) of [16], we have H2 ¼ 2H1. Similarly,
one can define P2 and show that P2 ¼ 2P1, D2¼D1,
ðM10Þ2¼ðM10Þ1, ðC0Þ2¼ 1

2
ðC0Þ1, and ðC1Þ2¼ 1

2
ðC1Þ1.

These are precisely the scalings of the generators for CFT
under the transformation x → x=2, t → t=2.
It is perhaps not surprising that the scaling property holds

because the construction is motivated by the field theories.
However, what is surprising is that the derivation of the
scaling property only uses the condition (1), which is
independent from the field theory description of CFTs. This
observation supports the conjecture that states satisfying
Eq. (1) are the CFT ground states.
Numerical tests.—We now move on to numerics and

verify that Eqs. (1), (3), (11), and Eq. (39) of [16] hold
approximately for critical lattice models. First, we test the
validity of the main Eqs. (1) and (3) on small sizes of four
different critical lattice models and on large sizes of free
fermions. We find that these equations hold approximately
for all the models we consider and the error decreases as the
size increases. Then, we test the reconstruction of the
Hamiltonian and momentum operator Eq. (11) and Eq. (39)
of [16] on small sizes of the four models.
The critical lattice models we consider are the critical

transverse field Ising model, critical three-state Potts
model, XX model, and Heisenberg model defined in
[16]. Table I lists the errors associated with Eqs. (1) and
(3). The error in Eq. (1) is defined as the norm of the

component in KΔjψi orthogonal to jψi, jKΔjψi−
hψ jKΔjψijψij, which is also the standard deviation of
KΔ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hK2

Δi − hKΔi2
p

. The error in Eq. (3) is defined as the
norm jKΔjψi − ðc=3ÞhðηÞjψij. We computed these errors
for ground states on circles with circumferences L ¼ 4, 8,
12, where ðA; B;CÞ have lengths (1, 1, 1), (2, 2, 2), and (3,
3, 3), respectively. In all cases, η ¼ 1=2. We observe that
except for the accidental case where the XX model and
Heisenberg model with circumference 4 have zero errors,
the error decreases as the system size increases. This result
is consistent with the intuition that the lattice model
approximates the CFT better in the IR as the system size
increases.
Figure 2 shows the error in Eq. (1) for free fermions

across various system sizes. We again observe that the error
decreases as the system size increases which roughly scales
as 1=L2. Simulating free fermions on a large system size is
feasible due to their lower complexity [24,25].
We now test the reconstructed Hamiltonian and momen-

tum on a circle in Eqs. 3 and 4 where

Hrec ¼
sinð2π=LÞ

2L sin2ðπ=LÞ
XL−1
j¼0

K̃½j;jþ2� − K̃½j;jþ1�; ð16Þ

Prec ¼
i
π2

XL−1
j¼0

h
K̃0

½jþ1;jþ3�; K̃
0
½j;jþ2�

i
: ð17Þ

The factor sinð2π=LÞ=2Lsin2ðπ=LÞ in Hrec comes from the
coefficient obtained when expressing EH as an integral of

TABLE I. The error in Eq. (1) jKΔjψi − hψ jKΔjψijψij and the
error in Eq. (3) jKΔjψi − ðc=3ÞhðηÞjψij for ground states on
circles with circumferences L ¼ 4, 8, 12.

Error in Eq. (1) Error in Eq. (3)

L 4 8 12 4 8 12

Ising model 0.0282 0.0090 0.0057 0.0288 0.0090 0.0057
Potts model 0.0422 0.0434
XX model 0 0.0399 0.0120 0.0486 0.0416 0.0125
Heisenberg 0 0.0562 0.0279 0.0566 0.0583 0.0286

FIG. 2. The error in Eq. (1) jKΔjψi − hψ jKΔjψijψij for the
ground state of the critical free fermions. The circle is partitioned
into four equal sized intervals, where the lengths ofA,B,C areL=4
and has cross ratio η ¼ 1=2. The error roughly scales as 1=L2.
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T00ðxÞ. On the other hand, the factor i=π2 in Prec is based
solely on the understanding at the infinite-size limit in
Eq. (39) of [16]. Despite this, as we will see, the
reconstructed Hamiltonian and momentum agree excel-
lently [26].
Before presenting the result, we first remark that the field

theory Hamiltonian and momentum satisfy

HCFTjΔ; si ¼
2π

L

�
Δ −

c
12

�
jΔ; si; ð18Þ

PCFTjΔ; si ¼
2π

L
sjΔ; si; ð19Þ

where jΔ; si is the image under the state-operator corre-
spondence of a scaling operator of dimension Δ and spin s.
We emphasize that Hrec is equal to HCFT up to a constant
shift so that Hrec has ground state energy 0, i.e., Hrec ¼
HCFT − E0 [27]. In particular, the multiplicative factor is
fixed, meaning that the scaling dimensions Δ can be
obtained without the rescaling required for the spectrum
of an arbitrary critical Hamiltonian.
Figure 3 compares the spectra of the original Hamiltonian

to the spectrum of the reconstructed Hamiltonian at low
energy. The reconstructed Hamiltonian Hrec is rescaled by
L=2π and the original Hamiltonian is rescaled to fitHrec.We
observe the spectra have excellent agreement even at the
small system size where L ¼ 4 [28].
Figure 4 compares the spectrum of i logT to the

spectrum of the reconstructed momentum at low energy,
where T is the translation operator by one site. We test if
T ≈ e−iPrec . Again both spectra are rescaled by L=2π and we
expect both to take integer values. We observe the spectra
agree at low energy and the agreement improves as the
system size increases.
Further directions.—(a) We show that CFT ground states

satisfy the condition in Eq. (1). Motivated by entanglement
bootstrap, we ask whether the converse is also true, i.e., if a
state satisfying the condition can be interpreted as a CFT
ground state. Additionally, we would like the statement to
be robust, useful even when the state only satisfies the
condition approximately.
(b) We proposed various formulas that hold exactly when

the state is a CFT ground state. However, for the ground
state of critical lattice models, the formula only holds
approximately. What is the convergence behavior and the
finite size scaling?
(c) Relatedly, one may wonder if we allow combinations

of not only one-site and two-site EH but also three-site EH,
which combination has the best approximation to the
Hamiltonian and the momentum. Furthermore, what if
we include EH on larger sites? Could this lead to a
sequence of reconstructions that converges to the actual
operator? Finding a good approximation is crucial for

obtaining a better estimation of the OPE based on the
method discussed in [29].
(d) Can we reproduce the key results in CFT directly

using quantum information? For example, can we show
that all nontrivial states must have c ≥ 1

2
? Can we show the

ground state energy is −ð2π=LÞðc=12Þ on a circle with

FIG. 3. Spectra of the original Hamiltonian and the recon-
structed Hamiltonian, where the states are ordered by energy
along the x axis. Top left: Ising model with L ¼ 4. Top right:
Lowest 40 eigenvalues for Ising model with L ¼ 12. Bottom left:
Heisenberg model with L ¼ 4. Bottom right: Lowest 40 eigen-
values for Heisenberg model with L ¼ 12.

FIG. 4. Spectra of i logT and the reconstructed momentum
operator P, where T is the translation operator by one site. The
states are ordered by energy along the x axis. In the infinite-size
limit, this order corresponds to the order of the scaling dimension
of the corresponding operator from the state-operator correspon-
dence. For the small system sizes shown here, these orders are not
yet the same. This is why the order changes in the figure when the
system size changes. Top left: Ising model with L ¼ 8. Bottom
left: Ising model with L ¼ 12. Top right: Potts model with L ¼ 6.
Bottom right: Potts model with L ¼ 8.
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circumference L? Can we show that the reconstructed
momentum operator should be approximately integer
valued at low energy and has a norm roughly below π?
(e) The appearance of hðηÞ in Eq. (3) suggests that η can

be interpreted as a probability. Could we find a physical
meaning for this observation?
(f) We provide an information theoretic criterion for CFT

ground state. Can we transform this criterion into an
algorithm that searches for CFTs by screening states that
satisfy Eq. (1)? We believe the answer is yes and plan to
explore this aspect in an upcoming paper.
(g) We provide an entropy criterion that appears to

describe ground states for 1þ 1D unitary CFTs. We
suspect a similar formula exists for 1þ 1D chiral CFTs,
dþ 1D CFTs, and perhaps complex CFTs [30,31].
(h) We show that CFT ground states are critical points

of the function SΔ, with a value proportional to the central
charge. What is its relation to the Zamolodchikov
c-function [32] and the entropic c-function [33]? For
example, it is known that the second- and third-order
expansion of the Zamolodchikov c-function near the
CFT point contains the CFT data, including the scaling
dimensions and the OPEs. Does the same hold for the
entropy function we proposed?
(i) We showed that 1þ 1D phases at RG fixed points

with Lorentz symmetry satisfy Eq. (1). What happens for
other RG fixed points without Lorentz symmetry, such as
those with dynamical critical exponent z ≠ 1? In the case of
free fermion models with z∈Z>0, the formula continues to
hold. When z is even, the ground state is simply a product
state, and when z is odd, the ground state is the same as the
ground state for z ¼ 1, which is a CFT.
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