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In this Letter, we derive new expressions for tree-level graviton amplitudes in N ¼ 8 supergravity from
Britto-Cachazo-Feng-Witten (BCFW) recursion relations combined with new types of bonus relations.
These bonus relations go beyond the famous 1=z2 behavior under a large BCFW shift and use knowledge
about certain zeros of graviton amplitudes in collinear kinematics. This extra knowledge can be used in the
context of global residue theorems by writing the amplitude in a special form using canonical building
blocks. In the next-to-maximally-helicity-violating case, these building blocks are dressed one-loop leading
singularities, the same objects that appear in the expansion of Yang-Mills amplitudes, where each term
corresponds to an R invariant. Unlike other approaches, our formula is not an expansion in terms of cyclic
objects and does not manifest color-kinematics duality but rather preserves the permutational symmetry of
its building blocks. We also comment on the possible connection to Grassmannian geometry and give some
nontrivial evidence of such structure for graviton amplitudes.
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Introduction.—In past two decades, the study of gravi-
tational amplitudes has been a very active area of research,
leading to major discoveries and great improvement in our
theoretical understanding and computational abilities.
However, some major mysteries remain unresolved even
for tree-level amplitudes. For example, the calculation of
higher-point amplitudes using Feynman diagrams is noto-
riously difficult due to the presence of vertices of any
multiplicity and their complicated Feynman rules. Yet the
final expressions for gravity amplitudes are surprisingly
simple and exhibit interesting properties some of which are
yet to be linked to underlying theoretical or geometric
structure. There are multiple modern tools available which
make the calculation of graviton amplitudes simpler and
manifest important properties of the final result.
The first of them is the color-kinematics duality. This is

motivated by the Kawai-Lewellen-Tye (KLT) relations
between open and closed string amplitudes [1] which
extend to Yang-Mills and gravity amplitudes in the low-
energy limit:

AGR
n ¼

X
ρ;σ

Kρ;σAYM
n ðσÞAYM

n ðρÞ; ð1Þ

where we sum over two sets of permutations ρ, σ of external
states of two color-ordered Yang-Mills amplitudes AYM

n

and the KLT kernel Kρ;σ is a certain polynomial in
Mandelstam variables sij. It was shown in [2] that there
exists a particular representation of Yang-Mills amplitudes
which “squares” into gravity amplitudes at the level of
cubic graphs, known as the Bern-Carrasco-Johansson form.
The construction also extends to loop amplitudes [2–5].
The double copy structure is also manifest in the world-
sheet formalism via ambitwistor strings [6] and the
Cachazo-Huan-Ye formula [7], where the amplitude is
expressed as an integral over world-sheet parameters con-
strained by scattering equations.
The second approach focuses on helicity amplitudes in

four dimensions and uses the Britto-Cachazo-Feng-Witten
(BCFW) recursion relations [8,9] to construct higher-point
amplitudes from lower-point ones. The crucial ingredient is

the behavior under a large BCFW shift: ˆ̃λn ¼ λ̃n þ zλ̃1,
λ̂1 ¼ λ1 − zλn, of the BCFW-shifted amplitudeAGR

n ðzÞ that
vanishes as

AGR
n ðzÞ ¼ O

�
1

z2

�
for z → ∞: ð2Þ

The improved behavior at infinity [10] (which is stronger
than the 1=z scaling of Yang-Mills amplitudes) leads to
various BCFW formulas [11,12] and many equivalent yet
different-looking expressions. The Cauchy formula for the
BCFW-shifted amplitudeI

dz
z
ð1þ αzÞAGR

n ðzÞ ¼ 0 ð3Þ

is valid for any α, and we can choose α to our liking (unlike
in Yang-Mills, where we have to set α ¼ 0 to prevent poles
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at infinity) or use this freedom to remove one term in the
expansion. Interestingly, multiline shifts do not seem to
work in gravity [13], though it is still an open problem
[14,15]. The elementary building blocks in any recursion
are the two three-point helicity amplitudes:

ð4Þ

which satisfy a simple doubling relation (after stripping off
the supermomentum delta function):

AGR
3 ð1; 2; 3Þ ¼ ½AYM

3 ð1; 2; 3Þ�2: ð5Þ

At higher point, it is possible to solve BCFW recursion in a
way that uses only ordered objects with a direct connection
to Yang-Mills amplitudes. In particular, we can decompose
the fully permutation-invariant gravity amplitude AGR

n into
a sum of ðn − 2Þ! ordered amplitudes:

AGR
n ¼

X
Pð2;…;n−1Þ

AGR
n ð1; 2;…; nÞ; ð6Þ

where labels n and 1 are special due to the choice of an ðn1Þ
shift. These ordered amplitudes can be expressed in terms
of dressed planar on-shell diagrams which evaluate to the
square of Yang-Mills superfunctions Rk up to a scalar
kinematic prefactor Gk:

AGR
n ¼

X
k

GkðsijÞR2
k; where AYM

n ¼
X
k

Rk: ð7Þ

The first expression of this type was found by Elvang and
Freedman for maximally-helicity-violating (MHV) ampli-
tudes [16] inspired by both KLT and BCFW methods. This
later served as motivation for an explicit solution of BCFW
for the general NkMHV amplitude in [17]. More recently,
the recursion was also organized in a new way which makes
a direct reference to the cubic graph double copy [18].
There are also other closed formulas for MHVamplitudes:
the Berends-Giele-Kuijf formula from 1988 [19], later
shown to be equivalent to the Mason-Skinner formula
[20], the inverse-soft factor construction [21,22], or for
more general amplitudes the embedding of BCFW recur-
sion into the language of gravity on-shell diagrams [23–
27]. At loop level, poles at infinity are generally present,
though there are many unexpected cancellations and
improved large-momentum scalings [15,28–31]. There
are also very interesting twistor-string-inspired [32–37]
and matrix-representation [38–40] approaches to gravity
amplitudes.
Note that the KLT formula (1) is different from the

double-copy-inspired BCFW expressions (7)—in the for-
mer we work with products of Yang-Mills amplitudes with
different orderings, while in the latter we square Yang-Mills

building blocks with fixed ordering (and sum over permu-
tations). Yet they share the similar idea of building gravity
amplitudes (with permutational symmetry) from Yang-
Mills amplitudes (with cyclic symmetry).
There is a different approach to the problem that is much

less developed at the moment, which attempts to exhibit the
permutational symmetry of the amplitude while necessarily
losing the manifest double copy connection. The most
interesting result on this front is the Hodges formula [41]
for n-point MHV (k ¼ 0) amplitudes, which takes a
strikingly simple form:

AGR
n;0 ¼ jΦabcj

habi2hbci2hcai2 ; ð8Þ

where jΦabcj is the determinant ofΦwith rows and columns
a, b, and c removed. The matrix Φ has components

Φij ¼
½ij�
hiji ; Φii ¼

X
j≠i

½ij�hjkihjli
hijihikihili ; ð9Þ

where λk and λl are reference spinors andΦii is the soft factor
for particle i. The formula is independent of the choice of
rows and reference spinors. This fascinating expression is
manifestly permutation invariant before fixing the reference
rows and columns a, b, and c to be removed (there is also a
generalized version with six indices and no apparent double
poles), but the explicit kinematic formulas lose this manifest
invariance due to the various ways momentum conservation
may be implemented. This is a consequence of the basic fact
that momentum conservation cannot be imposed democrati-
cally and one of the momenta can be eliminated from a
kinematic expression. In the simple case of the five-point
MHV amplitude

AGR
5;0 ¼

N5δ
4ðPÞδ8ðQÞ

h12ih13ih14ih15ih23ih24ih25ih34ih35ih45i ; ð10Þ

the numerator N5 ¼ h12i½23�h34i½41� − ½12�h23i½34�h41i is
equal to Trðp1p2p3p4Þ. There is no formofN5 thatmanifests
all symmetries—one momentum must be chosen and
eliminated. Additionally, the Hodges formula holds only for
MHV configurations. One of the authors of this Letter
found an expression for next-to-maximally-helicity-violating
(NMHV) helicity amplitude AGR

n;1ð1−2−3−4þ…nþÞ that
manifests (the full) S3 × Sn−3 symmetry of this amplitude,
but there was no obvious generalization to the super-
symmetric case [42].
In this Letter, we will present a new method to express

NkMHV amplitudes in terms of simple building blocks,
(dressed) one-loop leading singularities. Schematically,

AGR
n;k ¼

X
Q1;Q2

ðkinematic dressingÞGQ1;Q2
; ð11Þ

where the sum is over different partitions of the set of
external legs into three parts and leading singularity GQ1;Q2
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respects the permutation symmetry of Q1 and Q2 indi-
vidually. This is motivated by the Britto-Cachazo-Feng
recursion [8] for gluon amplitudes, now using additional
properties of gravity amplitudes: bonus relations (a con-
sequence of the 1=z2 behavior under large BCFW shifts)
and also a new type of relation coming from certain zeros of
the amplitude in the collinear region. In the end, we express
the amplitude in terms of new building blocks, very
reminiscent of the expansion of gluon amplitudes in terms
of Yangian invariants, but never introduce any ordering of
the external states—our objects manifest their own permu-
tational symmetry (as a subset of the total permutational
symmetry of the amplitude). We focus on the NMHV case
but also illustrate the generalization to higher k. In the end,
we discuss a curious connection between these new objects
and Grassmannian geometry, motivated by such a con-
nection between Yangian invariants (as building blocks for
gluon amplitudes) and dlog forms on the cells in the
positive Grassmannian.
Gluon amplitudes from triple cuts.—The BCFW-shifted

color-ordered amplitude AYM
n ðzÞ can be interpreted as a

one-loop triple cut:

ð12Þ

where we added a BCFW bridge [23] to the gray blob
representing the unshifted amplitude AYM

n . In these figures
all legs are on shell, both internal (cut propagators) and
external. The momentum flow in the bridge (horizontal
internal line) is linear in the shift parameter, P ¼ zλ1λ̃n. The
residue theorem for the triple cut function

ð13Þ

can be interpreted diagrammatically as a relation between
on-shell functions. We can use (13) to express the original
unshifted amplitude AYM

n (residue at z ¼ 0) in terms of
other residues which originate from factorization channels
of AYM

n ðzÞ. For the k ¼ 1, i.e., NMHV, case,

ð14Þ

where the dark gray blob is the NMHVamplitudeAYM
n;1 and

the terms of the rhs are one-loop leading singularities [8]. In
the next recursive step, we could express the gray blob in
the second term by the same sum (14) but now with n − 1

external legs. As a result, we would get higher-loop leading
singularities in the expansion for AYM

n;1 . There is also a way
to rewrite the formula for AYM

n;1 from (14) only in terms of
one-loop leading singularities. We remove the second term
in (14) by using a global residue theorem on the following
triple cut function:

ð15Þ

which produces a relation between leading singularities:

ð16Þ

We continue this procedure and remove the second term in
(16) using another residue theorem, where legs n − 2,
n − 1, and n are now attached to the same vertex. After all
terms with lower-point NMHV blobs are removed, we get
the final result for the n-point NMHV amplitude:

ð17Þ

where each term in the sum is famously an R-invariant
R1;iþ1;jþ1 [43]. For higher k, we can write similar formulas
which reduce terms in the recursive expansion to k-loop
leading singularities with only MHV (white) vertices and k
three-point MHV (black) vertices. Each term corresponds
to a canonical dlog form on a cell in the positive
Grassmannian Gþðk; nÞ [23].
New gravity formulas.—The BCFW bridge in the triple

cut function forAGR
n ðzÞ now has an additional factor of sn1:

ð18Þ

The residue theorem (13) for k ¼ 1 (NMHV) leads to

ð19Þ

where the corner Q2 has at least two external legs. We
would like to follow the same procedure as in the Yang-
Mills case and get rid off the first sum on the right-hand
side of (19) which contains a lower-point NMHV
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amplitude. Because of the scaling AGR
n ðzÞ ∼ 1=z2 at

z → ∞, we can use the residue theorem for the gravity
triple cut function (13) and also the same relation multiplied
by z—these are also called “bonus relations” [10,44,45],
written using the triple cut as

ð20Þ

which relates different one-loop leading singularities in
(19). The residue on z ¼ 0 (which isAGR

n ) is absent in (20).
We now consider another set of triple cut functions:

ð21Þ

It was conjectured in [24] that any one-loop triple cut
function scales as F ðzÞ ∼ 1=z3 for z → ∞ (analog of bonus
relations). As a result, at least in principle, we can use
residue theorems such asI

dzð1þ αzÞF ðzÞ ¼ 0 ð22Þ

to further relate terms in (19) with the constraint that we do
not introduce any new leading singularities with NMHV
vertices in order to preserve the form of the answer, similar
to the Yang-Mills case (17).
As it turns out, this is not enough, and it is not possible to

get rid off all terms in the first sum in (19). In the Yang-
Mills case (14), there was only one such term but now we
have n − 2 of them, and we do not have enough relations to
eliminate all the terms even if we use the improved 1=z2

behavior. With no further relations available, the analog of
(17) would not exist, and we would get only a generic
expansion in terms of higher-loop leading singularities (or
on-shell diagrams when rewriting everything in terms of
three-point on-shell vertices).
However, there is extra information about the zeros of

triple cuts (21) that we can use to write additional relations.
This comes from the collinear behavior of the amplitude,
also known as the splitting function [21], applied to on-
shell diagrams and leading singularities in [24]. In par-
ticular, the function F ðzÞ in (21) vanishes for z ¼ 0 for all
triple cuts if Q2 has at least two external legs (one of them
being n). Hence, we get a more general relation

I
dz

ð1þ αzÞ
z

F ðzÞ ¼ 0 ð23Þ

which gets no contribution from infinity. Because of the
multiplicative and divisive factors in the integrand, we refer
to relations between leading singularities from (23) as

double bonus relations. This does not hold if Q2 has only
one leg n, i.e., for the actual shifted amplitude (18). In this
case, the triple cut function has a pole (rather than a zero) as
also evident from (18). Note that there are further relations
that stem from

I
dz

ð1þ αzþ βz2Þ
z

F ðzÞ ¼ 0; ð24Þ

but we do not study their consequences, because (23) will
be sufficient for our purposes. Indeed, using (21) and (23)
for fixed α, we can rewrite the first sum in AGR

n;1 as

ð25Þ

Next, we rewrite the first sum on the right-hand side of (25)
using the same type of residue theorem, now with two legs
fn; jg in the corner replaced by three legs fn; j; ig, and so
on. Exploiting all these relations, we get

ð26Þ

where J ¼ h1jQ1Q2Q3j1� is a compact way to write the
Jacobian of this generic one-loop triple cut. Note that the
blob Q2 needs to have at least two external legs. This is a
precise analog of the Yang-Mills expression in terms of R
invariants (17) as far as the structure is concerned. The
difference is that the one-loop leading singularities are
dressed with kinematic prefactors. Note that the leg n is
fixed to be in the blob Q3—in the ordered case of (17),
this was automatic. Momentum conservation requires
Q1 þQ2 þQ3 þ p1 ¼ 0. The formulas simplify slightly
if we rewrite the prefactor using the solutions to on-shell
internal momenta P1, P2, P3, and P4:

ð27Þ
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where we set λP1
¼ λP4

¼ λ1, λP2
¼ h1jQ3Q2, and λP3

¼
h1jQ1Q2. After solving for internal on-shell momenta, the
(undressed) one-loop leading singularity evaluates to

Z
d8η̃P1

d8η̃P2
d8η̃P3

d8η̃P4

A1A2A3A4

J
; ð28Þ

where we denoted amplitudes in individual corners:

A1 ¼AGR
MHVðP1;fQ1g;P2Þ; A2 ¼AGR

MHVðP2;fQ2g;P3Þ;
A3 ¼AGR

MHVðP3;fQ3g;P4Þ; A4 ¼AGR
MHV

ðP4;1;P1Þ:

We integrate over the fermionic variables η̃Pj
and get

δ4ðPÞδ16ðQÞδ8ðΞÞ × Ã1Ã2Ã3 × J × h1jQ1Q3j1i6; ð29Þ

where Ãk are the bosonic parts of three MHVamplitudes—
we can, for example, use the Hodges formula (8) with λPk

and λ̃Pk
from (27) where the last factor in (29) is the

normalization of Pk. It is easy to write an explicit closed
form for each one-loop leading singularity using Hodges
determinants and, hence, the whole amplitude AGR

n;1 for any
number of points. The delta function δ8ðΞÞ is the same as in
the Yang-Mills case (up to N ¼ 4 → 8) and equal to

Ξ ¼
X
j∈Q1

Q2
2h1jiη̃j þ

X
k∈Q2

hkjQ2Q1j1iη̃k: ð30Þ

The same procedure applies to higher k. For N2MHV, we
can use the general residue theorem of the form (23) on a
complete set of N2MHV triple cuts with one three-point
MHV attached to the external leg 1 to eliminate terms with
a lower-point N2MHV vertex and write the BCFW formula
as

ð31Þ

where as before the gray vertex represents the NMHV
amplitude, now given by the formula (26). This is an analog
of the N2MHV Yang-Mills formula [46] in terms of two
building blocks A and B1 þ B2 (which correspond to two
different types of k ¼ 2Yangian invariants) as we also have
in (31). We can further express the gray NMHV vertices in
terms of (anti-)MHV vertices and get

ð32Þ

for the first term, where the NMHV prefactor in (26) is
evaluated via the replacements 1 → P2, n → P3,Q1 → Qa

2 ,
Q2 → Qb

2 , and Q3 → Qc
2. Similarly, the second contribu-

tion to the N2MHV amplitude gives

ð33Þ

Again, the prefactor in (26) is evaluated via replacements
1 → P1, n → P2, Q1 → Qa

1 , Q2 → Qb
1 , and Q3 → Qc

1. The
momenta Pi refer to those defined in (27). We can perform
a similar calculation for NkMHV amplitudes, which will
use expressions for the Nk−1MHV amplitude in terms of
(anti-)MHV vertices:

ð34Þ

Using the same procedure as before, we can express the
gray blobs in terms of minimal diagrams with only three-
point black and higher-point white vertices. As a result, the
NkMHV gravity amplitude can be then expressed in terms
of decorated (with kinematical prefactors) k-loop leading
singularities with k black vertices and 2kþ 1 white
vertices. In the analogous Yang-Mills case, each term
represents one higher-k Yangian invariant.
Finally, let us emphasize that the NMHV formula (26)

and the higher-k generalizations do not contain a sum over
permutations of ordered expressions. Rather, each term in
(26) is built from permutation-invariant objects (lower-
point MHV amplitudes), though the complete Sn permu-
tation symmetry is carried only by the whole sum.
TowardGrassmannian geometry.—InN ¼ 4 super Yang-

Mills (SYM) theory, BCFW terms are the same objects as
one-loop leading singularities. In the dual Grassmannian
formulation, they can be obtained as dlog forms on the cells
in the positive Grassmannian Gþðkþ 2; nÞ. Furthermore,
the whole sum (17) can then be interpreted geometrically as
a triangulation of an underlying amplituhedron geometry
[47–50]. In the particular case of n-point NMHV, each term
in (17) corresponds to a cell in the positive Grassmannian
Gþð3; nÞ which can be represented by a (convex) con-
figuration of n ordered points in P2, localized on three
lines:
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ð35Þ

where Ωdlog is a dlog form in the parameters of the
Grassmannian matrix C and δðC · ZÞ denotes a collection
of delta functions that solve for the Grassmannian param-
eters in terms of kinematic data λ, λ̃, and η̃. The dlog form is
very specific to the N ¼ 4 SYM theory (but extensions
exist for N < 4 SYM theory [23]). Our ultimate goal is to
find an analogous formula for gravity amplitudes: Ωdlog

must be replaced by some other ΩGR which reflects the
singularity structure of gravity amplitudes, and the points in
P2 should not exhibit any ordering (see Ref. [51] for study
of such configurations for nonadjacent BCFW shifts in
N ¼ 4 Yang-Mills theory).
In the gluon case, the first nontrivial example is a convex

configuration of six points in a plane where points 1, 2, and
3 are on a line (modulo cyclic permutations):

ð36Þ

Here, we denotedR123 one of the R invariants, the building
blocks of six-point NMHV amplitudes. There are three
equivalent ways to draw this configuration (corresponding
to a rotation of lines) which relates three one-loop leading
singularities:

ð37Þ

An analogous object can be defined for gravity, now by
summing all one-loop leading singularities which (in
analogy with Yang-Mills) could correspond to six (unor-
dered) points in P2 with points 1, 2, and 3 on a line. There
are two types of leading singularities that correspond to
such configurations. First, we get the following collection:

ð38Þ

Using (29), we can evaluate it to

GðaÞ
123 ¼

X
S123×S456

½23�h45is61
s123h12ih23ih13i½45�½56�½46�

h1j23j4�h1j23j5�h2j13j6�h3j12j6�
; ð39Þ

where we omitted in the numerator the delta functions
δ4ðPÞδ16ðQÞδ8ð½45�η̃6 þ ½56�η̃4 þ ½64�η̃5Þ and used a short
notation hajbcjd� for habi½bd� þ haci½cd�. There is another
way to draw the configurations of points that gives us the
following collection of leading singularities:

ð40Þ

which is a sum of three terms (each of which manifest
permutation symmetry in 1, 2, and 3):

GðbÞ
123 ¼

X
S456

h45ih56iðh12i½23�h3j45j6�½14� − ½12�h23i½34�h1j45j6�Þ
s123h12ih23ih13i½45�½56�h1j23j4�h2j13j4�

h3j12j4�h1j23j6�h2j13j6�h3j12j6�
ð41Þ

with the same set of delta functions. An explicit check
shows

GðaÞ
123 ¼ GðbÞ

123 ≡ G123 ð42Þ

which is an analog of (37) in Yang-Mills. This relation can
be proven by residue theorems for certain triple cuts (with
only MHV vertices). In the Yang-Mills case, the R invari-
ants also satisfy an important six-term identity:

R123 þR234 þR345 þR456 þR561 þR612 ¼ 0; ð43Þ

where Rijk corresponds to a configuration of six points
where points i, j, and k are now on the same line (for
example, R123 ≡R1;3;6 in the usual R-invariant notation).
This is a very nice consequence of the residue theorem in
the Grassmannian representation [23,52–54]. The new
objects Gabc satisfy an analogous formula:
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X
S6

Gabc ¼ 0 ð44Þ

which is a 20-term identity for Gabc [and, hence, a 60-term
identity for one-loop leading singularities using (40)]. This
bears a striking similarity to (43) with R invariants and
further is very suggestive of the existence of a Grass-
mannian construction, though the actual building blocks for
tree-level gravity amplitudes (26) are dressed with kin-
ematical factors (27). Hence, these prefactors should play a
crucial role in the putative geometric construction, which
we explore in upcoming work [55].
Conclusion and outlook.—In this Letter, we present new

expressions for n-point graviton amplitudes in terms of
canonical building blocks. In theNMHVcase, these are one-
loop leading singularities dressed with kinematical prefac-
tors, very similar to the Yang-Mills casewhere the same (but
undressed) objects are termwise equal to R invariants. The
analogy goes even further, andwe show that for the six-point
case the (undressed) objects satisfy new relations, similar to
a six-term relation between R invariants.
Writing amplitudes in terms of “good” building blocks is

crucial for addressing some burning questions: calculation
of poles at infinite momenta—possibly a critical step in the
formulation of loop recursion relations—and exploring the
UV structures in loop amplitudes. This also includes a
study of gravity on-shell diagrams and higher-loop leading
singularities which should be related to our building blocks
(as they are in Yang-Mills theory).
At the concrete level, the important question for the

future is the role of the kinematical dressing, how it fits into
the story of a (putative) Grassmannian geometry, residue
theorems, and bonus relations, and how to show in some
geometric way that different BCFW formulas (after being
rewritten in an appropriate form using our double bonus
relations) give the same amplitude. One particular direction
is the careful study of spurious pole cancellation. In the
gluon case [56], this lead to important insights and the
eventual discovery of the amplituhedron [47]. Another path
is to find a closer link with the formula for the n-point
NMHV fixed helicity amplitude presented in [42], which
makes manifest complete permutational symmetry (sepa-
rately in the labels of positive and negative helicity external
states). The interplay between the formula given in [42], the
ordered expressions for gravity [18], and our new BCFW
expression (26), together with a deeper understanding of
the Hodges MHV formula (which is implicitly used in our
building blocks as the white MHV vertices), might bring
us closer to the discovery of a putative gravituhedron
geometry.
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