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We propose and analyze a scalable and fully autonomous scheme for preparing spatially distributed
multiqubit entangled states in a dual-rail waveguide QED setup. In this approach, arrays of qubits located
along two separated waveguides are illuminated by correlated photons from the output of a nondegenerate
parametric amplifier. These photons drive the qubits into different classes of pure entangled steady states,
for which the degree of multipartite entanglement can be conveniently adjusted by the chosen pattern of
local qubit-photon detunings. Numerical simulations for moderate-sized networks show that the
preparation time for these complex multiqubit states increases at most linearly with the system size
and that one may benefit from an additional speedup in the limit of a large amplifier bandwidth. Therefore,
this scheme offers an intriguing new route for distributing ready-to-use multipartite entangled states across
large quantum networks, without requiring any precise pulse control and relying on a single Gaussian

entanglement source only.
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Introduction.—As quantum computing and quantum
communication systems with an increasing number
of coherently integrated components become techno-
logically available, a growing demand for efficient schemes
to transfer quantum states or distribute entanglement
across different parts of such networks will arise [1-4].
While basic protocols to do so are well known and have
already been successfully implemented in a variety of
platforms [5—14], it is envisioned that in future quantum
devices, entanglement must be generated and interchanged
among many thousands of qubits within a limited coher-
ence time. In view of this challenge, there is a strong
motivation to go beyond a serial application of existing
protocols and search for more efficient quantum commu-
nication strategies that are fast, parallelizable, and, ideally,
require a minimal amount of classical control.

In this Letter, we describe a fully autonomous entangle-
ment distribution scheme, which exploits an intriguing
physical effect, namely the formation of multipartite
entangled stationary states in a cascaded dual-rail quantum
network. Specifically, we consider a configuration as shown
in Fig. 1, where spatially separated qubits located along two
photonic waveguides are illuminated by the correlated
output of a nondegenerate parametric amplifier [15].
Previously, it was proposed to use broadband squeezed
reservoirs for generating bipartite entanglement between
separated qubit pairs [16-22] or, for specific arrangements,
between qubits along a 1D channel [23,24] or in coupled
arrays [25,26]. Here we show, first of all, that this concept
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can be generalized to produce, under ideal conditions, an
arbitrary number of maximally entangled qubit pairs over
large distances. Moreover, we find that the entanglement
shared between different sets of qubits can be adjusted by
simply changing the local qubit-photon detunings. This
provides a convenient way to “program” different classes of
multipartite entangled states without the need for any time-
dependent control or additional nonlocal operations.

To evaluate the scalability of this approach, we simulate
the formation of these multipartite entangled states under
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FIG. 1. Sketch of a dual-rail quantum network, where qubits
along two separated waveguides are driven by the correlated
output of a nondegenerate parametric amplifier and relax into a
pure steady state |y (r, 84, P)). As shown in the inset, the qubits
in waveguide A (B) are detuned from the central photon
frequency w, (wp) by 64; (0p;) and the qubit-waveguide
coupling is assumed to be fully directional. See text for more
details.
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more realistic conditions, taking in particular a finite
bandwidth of the squeezing source into account. We
find that the maximal number of entangled qubit pairs
N, remains rather robust under the influence of experi-
mental imperfections, and that the total preparation time
Tprep ~ Neng scales at most linearly with the system size,
independently of the complexity of the prepared state. In
the limit of a large amplifier bandwidth, the intrinsic
parallelization of the preparation scheme can be exploited
to further reduce Ty, which shifts the technological
requirements for scalability from the control of many
qubits to the optimization of a single Gaussian squeezing
source. This can be advantageous for many applica-
tions in optical, microwave, or hybrid [27-30] quantum
networks, where such photonic devices are currently
developed [14,31-37].

Model.—We consider a dual-rail quantum network as
depicted in Fig. 1, where two sets of qubits # = A, B are
coupled to two separate photonic channels. The wave-
guides are connected to a common nondegenerate para-
metric amplifier, which we model by a two-mode
squeezing interaction (A = 1) H, = ig(aj;ag —ayap) for
two local modes with bosonic annihilation operators a, and
ap. These photons then decay into the respective wave-
guides with rate x and drive the qubits into a correlated
state. For the following analysis, we assume that the qubit-
waveguide coupling is fully directional [38—40] and label
the qubits by the index i = 1, ..., N along the direction of
propagation. Such conditions can be realized by using
circulators [41-46], chiral waveguides [40], or other
schemes for directional coupling [47-50].

We first focus on the limit of a broadband amplifier,
kK — oo, in which case the dynamics of the photons can be
adiabatically eliminated to obtain an effective master
equation (see Ref. [51] for more details)

> vl (1)

n=A.B

pq = H ases pq
for the reduced qubit density operator py. Here y de-
notes the decay rate of each individual qubit and
D|[C]p = CpC" — {CTC,p}/2. In Eq. (1) we have already
rewritten the underlying directional qubit-qubit interactions
in terms of a coherent Hamiltonian evolution with
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and purely dissipative processes with collective jump
operators
J, = cosh(r)L, — sinh(r)L}, (3)

Jg = cosh(r)Lg — sinh(r)L}, (4)

where L, = >V, 57 ;. In this broadband limit, the system

is thus fully detemnned by the squeezing parameter
r = 2tanh~!(2g/x), characterizing the degree of two-mode
squeezing of the photon source, and the two sets of qubit
detunings, gn:A,B = (6515 0p2+ -1 OpN)-

Steady states.—Equation (1) describes an open quantum
many-body system with competing coherent and dissipa-
tive processes, which in general drive the qubits into a
highly mixed steady state. However, in the following, we
show that there exist specific conditions under which the
steady state of the network p§ = [wo)(yo| is not only pure
but also exhibits different degrees of multipartite entangle-
ment that can be controlled by the local detunings 5, ;.

We start our analysis by considering the simplest case of
a single pair of qubits (N =1) and 64, =5, =0, as
originally discussed in Ref. [16]. In this case, one can
explicitly show that the unique steady state of Eq. (1) is
lwo) = [®F,). where

cosh(r)|04 ;)0 ;) + sinh(r)[14;)[15 ;)
cosh(2r)

@) = (5)

approaches a maximally entangled Bell state for r > 1.
This state satisfies the dark-state conditions J, |yo) = 0 and
H o lwo) = 0, which implies that once the qubits have
reached the steady state, they completely decouple from the
squeezed photonic bath. Consequently, they no longer
affect successive qubits along the waveguide.
Importantly, this observation remains true even for finite
detunings satisfying 64 ; + 05 = 0, which then allows us
to systematically identify also more complex multiqubit
steady states by proceeding in two steps. First, we set

0p = —6,, such that, according to the argument from
above, qubits with the same index decouple pairwise from
the photonic reservoir. The network then relaxes into the
pure steady state [y) = |®@), where

@) = & [0]) (©)

is the product of N consecutive Bell pairs of the type given
in Eq. (5). Interestingly, this result is independent of the
total number of qubit pairs, similar to what has been found
for coupled spin chains [26] or discrete cavity arrays [25].

In the second step, we make use of the form invariance of
the cascaded master equation in Eq. (1) under unitary
transformations of the type [38]

Ui.i+1 E eiei.i+l(§B.i+§B.i+l)2’ (7)

where 5, = (o, 05,0%)/2 and the mixing angle satisfies
tan(0;;,1) = (6p; — 6p.iy1)/y- Under these transforma-
tions, one finds that U,-JHJ”U,TJJrl =J, and
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Uz l+1HCa§C(5A753) ii+1 — HCaSC(5A7Pi.i+l5B)’ (8)

where the permutation P; ;,; exchanges dp; and g ;. In
other words, given a pure steady state |y,) for a certain

detuning pattern 55, the state lwi) = U, iv1lyo) is a pure
steady state of the same network with a permuted pattern of
detunings, 5}; = P;;110p.

This form invariance now allows us to construct a large
family of multipartite entangled steady states, which are
parametrized by (i) the squeezing parameter r, (ii) the set of
detunings 6, for qubits in waveguide A, and (iii)) a
permutation P that fixes the detunings in waveguide B
to be 65 = —Pb,. By decomposing P = [[, P; ; 4 into a
product of nearest-neighbor transpositions, we can start
with the state in Eq. (6) and then use the relation below
Eq. (8) to derive an explicit expression for the correspond-
ing steady state,

HUl K} +1|®H (9)

|l//0 r, 5A7

Importantly, this is also the unique steady state of the
network, as discussed in more detail in [51]. A graphical
illustration of Eq. (9) is presented in Fig. 2(a).

Entanglement.—To investigate the entanglement proper-
ties of the family of states in Eq. (9), we start with the case
N =2 and choose the only nontrivial permutation
P = P,. We obtain

}’|CD1+,1>|(D§F.2> + iA|cD1+,z>|q)§r_1>
/y2+A2 ’

where A = 0, | — 04,. In Figs. 2(b) and 2(c) we visualize
the entanglement structure of this state in terms of the
concurrences C;; = C(p4 5,;) [58,59] of the reduced bipar-
tite qubit states py ;i ;- For A = 0, we find that for parallel
pairs C; ~ 1 already for moderate values of r = 1, con-
sistent with the state |®)). For [A| > y the same is true for
diagonal pairs, i.e., Cj, =Cy; ~ 1. For all intermediate
parameters, the state is a genuine four-partite entangled
state [60] and belongs to the set of locally maximally
entanglable states [61] for r > 1.

For a larger number of qubits, we can use the
entanglement entropy S(p,) = —Tr{p, Inp,} for a reduced
state p, to study the entanglement between different
bipartitions of the network. First of all, this analysis shows
that Sy =8(py) = -NIn[x*(1 —x)1], where x=
cosh?(r)/ cosh(2r) only depends on the squeezing para-
meter . This can be understood from the fact that the
unitaries U, ;,; only act within subsystem B. Thus, with
respect to this partition, the states in Eq. (9) can be
understood as generalized “rainbow states” [26,62,63] with

|ll'0> = (10)

‘d’o(gA7P)> = Usz x Uip x Uzz x Uszy
(b) 1 (c)
0.8
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FIG. 2.
53 = —6A, the detunings in waveguide B are reordered as 63 =

(a) Graphical illustration of Eq. (9). Starting from

—P5A through nearest-neighbor transpositions, following the
colored lines as a guide to the eye. Each transposition maps
into one of the unitary operations U, ;. that determine the final
steady state. (b) Bipartite entanglement expressed in terms of the
concurrences C;; for the four-qubit state in Eq. (10) as a function
of r, and in (c) as a function of A for » = 1. (d) Sketch of the
detuning pattern for the family of multipartite states described in
the text and different partitions for evaluating the entanglement
entropy. (e) Entanglement entropy S, as a function of n, for
different detunings A and r = 1.

a volume-law entanglement S(p,) ~NIn2 for r = 1. In
contrast, for partitions along the chain, the entanglement
entropy S, = S(py;.....,)) depends not only on the chosen

permutation P but also on the pattern of detunings 5A.
This is illustrated in Figs. 2(d) and 2(e), where we consider
as an example the detunings &,; = (i —1)A and the
reversed order, 0g; = —Py04; = —0pnNyi1-i» 1IN Wave-
guide B. For A > y the unitaries in Eq. (9) correspond
to approximate SWAP operations and S,, ~ 2n In 2. Instead,
for A <y, the entangling unitaries U;;.; ~+VSWAP
generate more multipartite entanglement across the
whole chain, which reduces the block-entanglement S,

correspondingly. In general, different choices for EA and P
can be used to define certain blocks of qubits that are
entangled among each other, independently of their physi-
cal location.

Preparation time.—So far we have shown that a single
two-mode squeezing source is in principle enough to
entangle an arbitrary number of qubits. However, for
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FIG. 3. (a)Relaxation into a bipartite entangled state for (_3:4 =0
and (b) into a multipartite entangled state for 53 = —Preng
and A =y/5. In both cases N = 5. (c) Scaling of the prepa-
ration time T, for different ratios A/y, where 8,; = A(i — 1)

and 33 = —gA. We define T, via the condition
[1 = (T prep)]/N = 0.001, where p = Tr[p3] is the purity. For
the examples in (a) and (b), T is indicated by the dashed

prep
vertical line. In all plots r = 1.

practical applications, we must still evaluate the time 7'p,,
that it takes to prepare this state. To do so we first continue
with the analysis of the ideal qubit master equation in
Eq. (1) and study the relaxation dynamics toward the steady
state |yg), assuming that at 7 = 0 all qubits are initialized in

state |0). In Fig. 3 this evolution is shown in (a) for the
bipartite entangled state |®) with gA =0 and in (b) for
the multipartite entangled state considered in Fig. 2(e). In
the bipartite case, we observe a successive, pairwise
formation of Bell states with a total time T, ~N.
Interestingly, already for &,; = 0, this preparation time
is faster than a sequential preparation of N independent Bell
pairs, i.e., Tpep(N) < NTpep(N = 1). For detuned qubits
the preparation time decreases further and 7T, (N) =
Toep(N = 1) for A2y, ie., all pairs are prepared in
parallel. For multipartite entangled states, where the
differences |8, ; — 4 ;| are necessarily small, a full paral-
lelization is not possible, but even in this case we obtain an
intrinsic advantage compared to a sequential distribution of
entanglement, followed by local gates. Note that for the

same detunings SA, the relaxation time T'pyp,
of the permutation P.

Scalability.—All the results so far have been derived
within the infinite-bandwidth approximation, which under-
lies Eq. (1) and assumes that correlated photons are
available at arbitrary detunings. Obviously, this assumption
must break down when &, = max{|64,|} Z K, but even
for 64,; = 0 it has been shown that any finite x limits the
transferable entanglement [22]. Therefore, to provide
physically meaningful predictions about the scalability of
the current scheme it is necessary to go beyond the
assumption of a Markovian squeezed reservoir [16-26]
and take finite-bandwidth effects into account. To do
so we now simulate the dynamics of the state of the full
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FIG. 4. (a) Plot of the steady-state concurrences C;; for SA =0
and different amplifier bandwidths. (b) Maximal number of
entangled pairs, N, as a function of = «/y, and different
dephasing rates y . (c) Dependence of the concurrence of a single
qubit pair on the detuning A, where 6,; = —dp; = A and
different values of f have been assumed. (d) Plot of the
concurrence Cyy in a chain of N =4 qubit pairs with J,; =
(i — 1)A = =55 ; and a finite dephasing rate. This plot illustrates
the initial gain from a parallel preparation when A > 0, while the
entanglement decreases again when 8., = (N — 1)A =k, due to
finite bandwidth effects. In all plots r = 1.

network p as described by the cascaded quantum master
equation [51]

p= _i[H)(v pl+ ZK’D[CZ”],O

. 5 N _ Y4
30 (<1 o] + 1Dl o + 2Dl )
n,i

+ Y Ve Tlayoglp+ Y rTlogioylp. (1)
n,i

n.Jj>i

Here we have already included a finite dephasing rate y , for
each qubit and introduced the superoperator 7 [0, O,]p =

[01p, O}] 4 [0,,p0]] to model directional interactions
between all nodes along the same waveguide.

In Fig. 4(a) we plot the steady-state concurrences C;; for
the case 6, ; = 0 and different ratios # = k/y. We see that a
finite bandwidth x reduces the maximal amount of entan-
glement for the first pair [22] and also results in a gradual
decay of the entanglement along the chain. By using a
linear extrapolation, N, = C;1/(C;; —Cy), We can use
these finite-size simulations to extract the maximal number
of pairs that can be entangled for a given  and dephasing
rate y,,. These results are summarized in Fig. 4(b). We see
that for otherwise ideal conditions, rather large numbers of
Neni ~ 10-100 can be entangled for moderate 3, while the
presence of dephasing or other imperfections sets addi-
tional limits on N,,,,. Note that these results are for 6, ; = 0,
where the formation of the steady state is the slowest. Thus,
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these results represent approximate upper bounds for N,
also for all other classes of multipartite entangled states.
Additional plots for number of entangled pairs for various
experimental sources of imperfections together with esti-
mates for the achievable N, in state-of-the-art microwave
networks are presented in [51].

Finally, let us return to the observed speedup for far-
detuned qubits, but taking a finite amplifier bandwidth into
account. In Fig. 4(c) we investigate, first of all, the
dependence of C;; on the detuning 5, ; = A. As expected,
this plot shows a significant decay of the entanglement for
A/k > 1, from which we also deduce that §,,,,, < x must be
satisfied in the multiqubit case. Since for a parallel
preparation with Tj,.,(N) ~ const we require G X ¥N,
we conclude that the number of pairs that can be entangled
in parallel N~ N, is actually comparable to the total

number of entangled pairs for EA =0. As a minimal
illustration of this behavior, we consider in Fig. 4(d) the
example of N = 4 pairs with §,; = A(i — 1). We plot the
concurrence of the last pair C44 for a fixed dephasing rate y,
and increasing detuning A. Up to A ~k, entanglement
increases due to a reduced preparation time, while for larger
detunings finite-bandwidth effects set in and degrade the
entanglement again. Note that for a parametric amplifier
with asymmetric decay rates x4 # kp, the structure of
the ideal qubit master equation in Eq. (1) remains the
same [51], but finite-bandwidth effects are determined by
the minimal rate k,;, = min{x,,kp}.

Conclusions.—In summary, we have presented a fully
autonomous scheme for distributing entanglement among
two distant sets of qubits. Within the same setup, states with
varying degrees of bi- and multipartite entanglement can be
prepared by adjusting the squeezing strength and the
local qubit detunings, while retaining a preparation
time that scales at most linearly with N. Compared to
related autonomous protocols discussed for single wave-
guides [23,24,38,39], locally coupled chains [25,26], or
combinations thereof [64], the use of a propagating two-
mode entangled source offers the possibility to entangle
qubits that are arbitrarily far apart [51] and a systematic
way to parallelize the scheme by increasing the bandwidth
of the amplifier. This makes this approach very attractive
for long-distance entanglement distribution schemes with
long-lived spins or narrow-bandwidth optical emitters,
but also for local area quantum networks [65-68], where
multiple nodes can be simultaneously entangled with a
limited amount of control.
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