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While magnetic skyrmions are often modeled as rigid particles, both experiments and micromagnetic
simulations indicate their easy-to-deform characteristic, especially when their motion is restricted by
defects. Here we establish a theoretical framework for the dynamics of magnetic skyrmions by
incorporating the degrees of freedom related to deformation and predict well the current-driven dynamics
of deformable skyrmions in the presence of line defects without any parameter fitting, where classical
theories based on rigid-particle assumption deviate significantly. Further, we define an emergent property
of magnetic skyrmions—flexibility and show that this property strongly modulates the depinning dynamics
of skyrmions along a line defect with breaches. Our work explores the emergent mechanics of magnetic
skyrmions and extends the current understanding on the dynamics of skyrmions interacted with defects.
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Magnetic skyrmions are a class of swirling spin textures
with an integral topological charge [1–3]. Because of
their small sizes, intriguing physical properties [4], and
characteristics in response to external stimuli like electric
current [5,6] ormagnetic field [7,8], magnetic skyrmions are
considered as promising candidates in next-generation
spintronic devices [9,10]. Since the first experimental report
around 2009 [11], magnetic skyrmions have attracted
considerable attention, particularly on their current-driven
dynamics, with various device concepts being proposed.
Magnetic skyrmions are usually treated as rigid

particles in theoretical studies [12,13], and their transport
behaviors are analytically described by the classical Thiele’s
equation [14]. This theory has achieved great success in
describing the motion of magnetic skyrmions, particularly
providing an intuitive explanation of the skyrmion Hall
effect [15,16] by deriving a topology-related Magnus force
in the motion equation. However, this first version of
emergent mechanic framework for the motion of magnetic
skyrmions neglects any possible deformation, which is
commonly observed in both simulations and experi-
ments [17–19] and is noticeable even under small
currents [20]. Importantly, defects in real samples (e.g.,
natural edges, grain boundaries, impurities, etc.) would
cause more severe deformation of skyrmions by restricting
their motion [21–23]. Deformation of skyrmions signifi-
cantly affects their motion dynamics that is crucial to their
applications, e.g., it brings large inertias [24] and can even
lead to topology-irrelevant skyrmion Hall effect [25,26].

The deformability of skyrmions also makes them promising
in new frontiers like reservoir computing [27] and random
number generation [23]. However, a mechanical frame-
work for the dynamics (i.e., deformation and motion, and
their interplay) of magnetic skyrmions has not yet been
established.
Over the years, the interplay of deformation and

motion has been an important issue of the dynamics of
magnetic textures. For magnetic domain walls or vortexes,
well-known concepts such as linear mobility [28], Döring
mass [29], Walker breakdown [30], and oscillatory
behavior [31,32] have been established. In a microscopic
view, the motion and deformation of magnetic textures are
collective modes of spins. Therefore, both these behaviors
can be formulated by using a unified series of collective
coordinates ξðtÞ ¼ fξ0; ξ1; ξ2;…g. In principle, the number
of collective modes of a magnetic texture is infinite,
but its motion and deformation behaviors are mainly
determined by a couple of soft modes with long relaxation
times [31–36]. To capture the dynamics of magnetic
skyrmion, it is crucial to find those soft modes related to
not only motion but also deformation and explore the
interaction of these modes.
In this Letter, we establish a theoretical framework

for the dynamics of magnetic skyrmions by incorporating
two geometry-related coordinates, radius R and wall
width w, into the classical Thiele’ equation. The balance
equation in terms of the new coordinates R and w and the
generalized forces are derived. Based on this framework,
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the current-driven dynamics of deformable skyrmions in the
presence of line defects can be predicted without parameters
fitting. Interestingly, as an emergent behavior, the deforma-
tion of skyrmions violates conventional elastic mechanics
such as the Saint-Venant’s principle and positive Poisson’s
ratio. Furtherly, we quantify the deformability of skyrmions
by introducing an emergent property, flexibility of sky-
rmions. Flexibility is demonstrated to strongly modulate the
depinning dynamics of the skyrmion moving along a line
defect with breaches, implying a potential skyrmion valve.
We consider a Néel-type skyrmion system consisting of a

ferromagnetic (FM) layer and a heavy-metal (HM) layer.
The Hamiltonian H of the system is expressed as [37,38]

H ¼
Z n

Að∇mÞ2 þD
�
mzð∇ ·mÞ −m · ∇mz

�

−Km2
z − 1

2
μ0Hd ·m

o
dV: ð1Þ

Here, m denotes the unit vector of magnetization field; mz
is its z component; A, D, and K are the Dzyaloshinskii-
Moriya interaction (DMI) constant [37,38], perpendicular
magnetic anisotropy (PMA), and magnetostatic field,
respectively. Hd is the exchange stiffness.
The dynamics of magnetization field m is governed by

the Landau-Lifshitz-Gilbert (LLG) equation,

ṁ ¼ −jγjm ×Heff þ αðm × ṁÞ þ τSOT; ð2Þ

where γ and α are the gyromagnetic ratio and Gilbert
damping parameter, respectively. Heff is the effective field,
which is expressed as Heff ¼ −δH=δm. τSOT represents a
dampinglike spin-orbit torque (SOT).
With the collective coordinates are ξðtÞ¼fξ0;ξ1;ξ2;…g,

the deformation of magnetic textures can be interpreted as
the generalized displacement along the ξi axis. The magne-
tization field can then be expressed as mðtÞ ¼ m½r; ξðtÞ�.
Thus, the generalized dynamic equation of magnetic struc-
tures can be directly derived from the LLG equation (see
derivation details in the Supplemental Material [39]),

FG
ξi
− FD

ξi
¼ FH

ξi
þ FSOT

ξi
: ð3Þ

Here, the ξi component of the jth generalized force Fj
ξi
is

expressed as Fj
ξi
¼ − R ðm × LjÞ · ∂m=∂ξidV, where the Lj

is the jth termof theLLGequation.When the deformation of
the skyrmion is neglected, only translation modes are
involved. The collective coordinates are chosen as
ξi ¼ X, Y, where X and Y are coordinates of the skyrmion
center. Equation (3) then reduces to the classical Thiele’s
equation,

4πQêz × v − Γv ¼ βHΛJ þ∇φsk; ð4Þ
where Q is topological charge, v is the velocity of the
skyrmion, J is the current density, φsk is the potential of the

skyrmion, βH is the SOT parameter, Λ is the driving factor,
and Γ is the damping factor.
We apply this theoretical framework to the dynamics of

the skyrmion in the presence of a line defect. Line defects
are quite common in racetrack-type structures, which can
be natural edges or defect tracks with different magnetic
interactions from the bulk region [26]. In this work, four
types of line defects (either with higher PMA, higher
exchange stiffness, or lower DMI than the bulk region, or
are natural truncated edges) are studied, and they impose an
energy barrier to the skyrmion. In our model system, both
the line defect and the applied current are set to be along the
x axis [Fig. 1(a)]. Along the y axis, the skyrmion expe-
riences two forces, the gyrotropic force FG

y ¼ 4πQv and
the blocking force by the line defect FB

y ¼ ∂φsk=∂y.
To establish the equilibrium equation of the generalized

forces in terms of the generalized coordinates, we express
the magnetization of the skyrmion in an analytical way as
m ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ [40]. Here, horizontal
angle θ satisfies θ ¼ 2 arctan½sinhðr=wÞ= sinhðR=wÞ�;
azimuthal angle ϕ is expressed as ϕ ¼ β þ ψ ; β and r
are the polar angle and polar radius in polar coordinates; R,
w, and ψ are the radius, wall width, and precession angle of
the skyrmion (see Fig. S2 [39]). Among the various modes
of deformation, radially symmetric modes of the radius
ξ1 ¼ R and the wall width ξ2 ¼ w [Fig. 1(b)] are the
primary deformation modes [39]. Other modes like the
precession angle, the angle variation of the radius, and
the wall width are hard modes and their contributions to

FIG. 1. Schematic illustration of the generalized dynamic
model of a deformable magnetic skyrmion interacted with a line
defect. (a) Force balance diagram. (b) Translation and deforma-
tion modes of a skyrmion texture. (c) Effect of the generalized
gyrotropic force on different segments of the skyrmion wall. The
inward and outward arrows represent compression and expan-
sion, respectively. (d) Effect of the generalized blocking force on
different segments of the skyrmion wall. Green arrow and dashed
arrow represent the internal forces and equivalent joint force,
respectively.
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skyrmion dynamics can be ignored. In this case, R and w
are irrelevant with β and ψ ¼ 0. Then, the equilibrium
equations of the generalized forces are only functions of R
and w. By substituting m into the LLG equation [Eq. (2)],
we can derive the equilibrium equations of the generalized
forces as functions of R and w (see Supplemental Material,
Sec. S3 [39] for details).
Note that not all the terms in the LLG equation [Eq. (2)]

are relevant to the deformation of the skyrmion. For
example, the gyrotropic term, which leads to the first term
in Eqs. (3) and (4), contributes to a generalized gyro-
tropic force FG

R acting on coordinate R, with FG
R ¼R

fGRdβ ¼ − R
2v sin βdβ. Here, fGRðβÞ is the generalized

gyrotropic force distributed on each segment of skyrmion
wall in polar angle β. As shown in Fig. 1(c), the effect of
gyrotropic force on each segment mutually cancels.
Overall, it does not affect the radius of skyrmion and
FG
R ¼ 0. Similarly, the SOT term is also zero. Moreover, for

steady deformation, Ṙ ¼ ẇ ¼ 0, and the generalized
damping forces satisfy FD

R ¼ FD
w ¼ 0.

Only the conservative terms related to H expressed as
Fj
i ¼ γ

R
δHj=δξidV contribute to the deformation of sky-

rmion, where the total Hamiltonian H ¼ HS þHB is
contributed by the magnetic interaction of the system
HS and the energy barrier of defects HB. HS has the same
form as the pristine system but the form of HB is still
unknown. The equilibrium equations of generalized forces
in Eq. (3) are reduced to FS

R − FB
R ¼ 0 and FS

w − FB
w ¼ 0.

When the skyrmion approaches the defect, only a small
part of skyrmion enters the defect region. In this case,
energy increases solely in the segment of the skyrmion
nearest to the defects [the upper-most segment in Fig. 1(d)].
This effect prevents skyrmion furtherly entering the defect
region. Meanwhile, the increasing energy leads to a strong
compressive force exerted on the segments closest to the
defect [as shown in Fig. 1(d)]. To maintain the circular
shape of skyrmion, the nearby segments generate internal
forces to counterbalance the external force. Ultimately,
the external force exerted on local segment of skyrmion
is evenly distributed throughout the entire skyrmion and
results in an overall compression. In this case, the
energy penalty due to entering the defect region by dy is
equal to that caused by skyrmion expansion by δR, i.e.,R
δHB=δRdV ¼ ∂φ=∂Y [39]. Moreover, according to

Thiele’s equation [Eq. (4)], ∂φ=∂Y ¼ 4πQv. In this way,
we acquire the value of FB

R without knowing the specific
form of HB. Similarly, we can demonstrate that FB

w ¼ 0,
and Eq. (3) can be expressed as

Z
γ
δHS

δR
dV þ 4πQv ¼ 0;
Z

δHS

δw
dV ¼ 0: ð5Þ

Based on this approach, the deformation denoted by radius
R and wall width w of skyrmions under external currents
can be solved directly without any parameter fitting.
We emphasize the nature of skyrmion deformation as an

emerging mechanics phenomenon. That is, we can estab-
lish balanced equations for the deformation mode coor-
dinates, as what has been done by the classical Thiele’s
theory for the translation mode of skyrmion. Here, we show
that both the deformation and translation modes are
associated with specific spin-flipping processes, and their
generated virtual works are interconnected. Thus, a rela-
tionship between the generalized forces of these modes can
be established. The interaction between the skyrmion and
defects is commonly considered to be a complex problem,
as it is challenging to determine how defects affect the local
interaction of spins. However, by associating the motion
and deformation of skyrmions in view of emergent
mechanics, this problem is greatly simplified. Our con-
clusion is, the deformation of the skyrmion is only related
to its motion characteristics (see Supplemental Material,
Sec. S4 [39] for details).
To verify our model (hereafter we call it the flexible

model in contrast to the classical rigid model), the dynam-
ics of a series of skyrmions with similar size and mobility
but with different flexibility (a quantitative definition will
be given later) are simulated in the presence of a line
defect. By varying PMA constant K and DMI constant D
simultaneously, the radii and mobility of the skyrmions
are controlled as ∼13 nm and ∼6 × 10−10 m3=C [39]. The
line defect is in 4 nm width (with the Kdefect 1.5 times
higher than that in the bulk region) and exerts a large
enough energy barrier to block the skyrmion. Figure 2(a)
shows the trajectories of a relatively soft skyrmion
(K ¼ 1 × 105 J=m3) and a relatively hard skyrmion
(K ¼ 10 × 105 J=m3) under the same current density

FIG. 2. Dynamics of skyrmions interacted with a line defect.
The micromagnetic simulation results of (a) the trajectories and
(b) the velocity and size variations of two skyrmions with similar
size but different flexibility. (c) Comparison of the predicted
skyrmion velocity by micromagnetic simulation, Thiele’s model
based on rigid particle assumption (rigid model), and our model
including deformation of the skyrmion (flexible model).
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(J ¼ 2 MA=cm2). The velocity and size evolution curves
of the two skyrmions are shown in Fig. 2(b). It is clear that
the two skyrmions have similar sizes and velocities when
they are far away from the line defect. However, when
they approach the line defect, they exhibit different size
changes and acceleration. The deformation and accelera-
tion of the soft skyrmion are much larger than those of the
hard one. Such an acceleration effect originates from the
balance of the gyrotropic force and the defect blocking
force [48,49]. The velocity of the skyrmion along the line
defect is given by vd ¼ βHJΛ=Γ, where Λ and Γ satisfy
Λ ¼ π2R and Γ ¼ 2παðR=wþ w=RÞ [41].
The deformation of the skyrmion is expressed in term of

change in R and w as εR ¼ ΔR=R0, εw ¼ Δw=w0, similar
to elastic mechanics. R0 and w0 are the radius and
wall width of skyrmions without deformation, where R0

and w0 satisfy R0 ¼ πD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ð16AK2 − π2D2KÞ

p
and

w0 ¼ πD=4K [40]. According to the second formula in
Eq. (5), no external force is exerted on the general
coordinate w. Thus, R and w need to satisfy a specific
relation, εw ¼ −κskεR. Here, κsk ¼ −A=ðAþ KR2Þ is
defined as Poisson’s ratio of the skyrmion, and it has a
negative value. One can use εR to evaluate the skyrmion
deformation. In this case, motion of the deformed skyrmion
can be described by an extended Thiele equation,

4πQêz × v − Γ0v ¼ βHΛ0J þ Fdeform þ∇φsk: ð6Þ

Here, Fdeform ¼ −Γ0ðb1εR − b2ε2RÞv − βHΛ0εRJ is the
additional deformation term. Γ0 and Λ0 are the damping
and driving factors of skyrmion without deformation.
b1 and b2 are geometry parameters given by b1 ¼
ð1 − η2RÞ2=ð1þ η2RÞ and b2 ¼ 1.5η2Rb1, with ηR ¼ w0=R0.
For the classical rigid model, the radius and wall width of

the skyrmion are fixed and thus, the v-J curve exhibits
linearity. For our model with the deformation of the
skyrmion taken into account, the dependent between vd
and J is no longer linear. Based on Eqs. (5) and (6), vd can
be solved analytically. We compare the analytical results of
these two models with the micromagnetic simulation
results [Fig. 2(c)]. For hard skyrmions (K is large), both
models work in a wide range of current density J. For soft
skyrmions (K is small) at low J, as the deformation of the
skyrmion is small, both models are still in good agreement
with the simulation results. As J increases, however, the
deformation of the skyrmion becomes nonnegligible and
causes nonlinearity of the v-J curve. In this case, our
flexible model that incorporates deformation of the sky-
rmion is still in good agreement with the simulation results,
in contrast to the rigid model.
A critical question remains unclear: how to quantify the

deformability of the skyrmion? To answer this question, we
simulate the deformation of the skyrmion at different
current densities. Meanwhile, based on Eq. (5) we can
define the effective force of the skyrmion resisting external

current as Feff − J ¼ 0. The effective force can be
expressed as Feff ¼ γ

R
δHs=δRdVðR2 þ w2Þ=4πβ0wR2.

Retaining the first two orders about εR, the equilibrium
equations of the first formula in Eq. (5) is rewritten as

1

λ1
εR þ 1

λ2
ε2R − J ¼ 0: ð7Þ

Here, λ1 and λ2 are the first and second order of flexibility.
λ1 and λ2 satisfy λ1 ¼ 8KR2

0=π
2γβ0D2 and λ2 ¼ λ1=5.

Constant β0 satisfies β0 ¼ πβH=2α. Thus, we can define
the flexibility of the skyrmion as λ1, which quantifies the
ability of the skyrmion to generate an effective force by
inducing deformation. The skyrmion with higher flexibility
requires larger deformation to generate equivalent forces
resisting the external current.
The predicted εR and εw by micromagnetic simulation

and the developed flexible model are shown in Figs. 3(a)

FIG. 3. Deformation of the skyrmion at different current
densities. Dependence of (a) εR and (b) εw on current density.
K is in unit of 105 J=m3. (c) The predicted dependence of εR on
the direction of applied current θm by the flexible model and
simulation. (d) The predicted flexibility of skyrmions with similar
size but different K by micromagnetic simulation and the
analytical flexible model. J0 is in units of MA=cm2. (e) K-D
phase diagram of skyrmion flexibility. FM, SK, and SD represent
the ferromagnetic, skyrmion, and stripe-domain phases, respec-
tively. (f) Comparison between the analytical and numerical
results of flexibility of skyrmions under different PMA and DMI.
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and 3(b). The results predicted by the flexible model and
simulation are in good agreement. We further calculate the
flexibilities of skyrmions with similar size as a function of
perpendicular anisotropy K based on the micromagnetic
simulation and our model [Fig. 3(c)]. In good consistence
with simulation, our model shows that the flexibility of the
skyrmion in similar size increases as K increases.
Moreover, our model can be generalized to any direction

of the applied current and Eq. (7) is rewritten as

Z
γ
δHS

δR
dV þ 4πQv cos θm þ βHΛJ sin θm ¼ 0;

Z
δHS

δw
dV ¼ 0: ð8Þ

Here, θm is the angle between the current and the line
defect. The dependence of εR on θm for skyrmions with
similar size but different K is further predicted by the
flexible model and simulation [Fig. 3(d)]. Here, J is fixed at
5 MA=cm2. The symmetry axes of the deformation curves
are related to the Hall angle of the skyrmion. Further, we
simulate the K-D phase diagram of skyrmion flexibility
[Fig. 3(e)]. It is found that the flexibility of skyrmion λ1
increases rapidly near the phase boundary between the
skyrmion (SK) and stripe-domain (SD) phases, very much
like the magnetic and dielectric permittivity of ferro-
magnetic and ferroelectric materials. This is because near
the phase boundary, the energy of the skyrmion is close to
the ferromagnetic background, and the energy penalty due
to deformation is small. Comparison between numerical
and analytical results is shown in Fig. 3(f). Again, the
results are in good agreement with each other. We therefore
establish an effective analytical model to predict the
deformation of the skyrmion.
We finally show the effect of flexibility on the depinning

characteristics of skyrmions. When interacting with defects,
skyrmions can either directly penetrate through the
defects or bypass the defects (i.e., through the gap between
defects) [26]. Apparently, whether a skyrmion can bypass

the defects is related to its size, the gaps between defects, as
well as its flexibility. As the flexibility of the skyrmion
becomes smaller, its deformation will be smaller, making it
more difficult for it to “squeeze” through the defect gaps.
The dynamics of skyrmions near a line defect with a breach
is simulated and the results are shown in Fig. 4. These
skyrmions have similar size but different flexibilites. The
size of the breach is smaller than that of the skyrmion,
requiring a specific threshold current density to enable the
passage of skyrmion. It shows that the critical depinning
current density varies 3 to 5 times due to the difference of
flexibility, implying the important role of this emergent
mechanic property playing in skyrmion dynamics.
In conclusion, a theoretical framework for the dynamics

of magnetic skyrmions is established by incorporating
the deformation coordinates. Based on our model, the
current-driven dynamics of deformable skyrmions in the
presence of line defects can be analytically predicted and
agrees well with the micromagnetic simulation, in contrast
to the classical rigid-particle model. An emergent property
of skyrmions—flexibility is defined and its important role
in current-driven skyrmion dynamics is emphasized.
Our work attempts to develop the emergent mechanics
for the deformation and motion dynamics of magnetic
skyrmions and extends our current understanding on the
dynamics of skyrmions. Apart from the cases of line
defects, flexibility also largely affects the transport
characteristics of the skyrmion in the presence of point
defects (see Supplemental Material, Sec. S7 [39] for
details). Our model is also appliable to other nonlinear
response of motion [50] or compression behavior of
skyrmions [42,51,52]. The case of different type of
defects like notch, point defect, and other deformation
cases of skyrmions can also be handled in a similar way.
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