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Semiconductor moiré superlattices comprise an array of artificial atoms and provide a highly tunable
platform for exploring novel electronic phases. We introduce a theoretical framework for studying moiré
quantum matter that treats intra-moiré-atom interactions exactly and is controlled in the limit of large moiré
period. We reveal an abundance of new physics arising from strong electron interactions when there are
multiple electrons within a moiré unit cell. In particular, at filling factor n ¼ 3, the Coulomb interaction
within each three-electron moiré atom leads to a three-lobed “Wigner molecule.” When their size is
comparable to the moiré period, the Wigner molecules form an emergent Kagome lattice. Our Letter
identifies two universal length scales characterizing the kinetic and interaction energies in moiré materials
and demonstrates a rich phase diagram due to their interplay.
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Introduction.—The field of quantum science and engi-
neering has long been fascinated with the creation of
artificial atoms and artificial solids with desired properties.
Artificial atoms, such as quantum dots and superconducting
qubits, exhibit discrete energy levels and provide a physical
carrier of quantum information. An array of coupled
artificial atoms defines an artificial solid, which may be
used for quantum simulation and quantum computing.
Recently, the advent of moiré materials has provided a
remarkably simple and robust realization of artificial solids,
offering unprecedented opportunities to explore quantum
phases of matter in two dimensions [1–3]. In particular,
moiré superlattices of semiconductor transition metal
dichalcogenides (TMDs) host strongly interacting electrons
in a periodic potential. When the moiré period is large,
doped electrons are spatially confined to the potential
minima, leading to an array of artificial atoms. Electron
tunneling between adjacent moiré atoms generates moiré
bands. The charge density can be easily varied across a
range of moiré band fillings by electrostatic gating, a means
of manipulation unprecedented in natural solids whose
electron density is determined by the chemistry of their
constituent atoms. The in situ tunable atomic number in
semiconductor moiré materials is a remarkable property.
To date, much theoretical analysis has relied on an

effective Hubbard model description of interacting elec-
trons in the lowest few moiré bands [4–7]. This approach
successfully explains and predicts many observed phe-
nomena such as the emergence of Mott insulators at
n ¼ 1 [8,9], incompressible Wigner crystals at fractional
fillings n < 1 [8,10–17], and charge transfer between
distinct species of moiré atoms at n > 1 [5,18–21] (n is
the number of doped electrons or holes per moiré unit cell).

However, it is important to note that the characteristic
Coulomb interaction energy within a moiré atom is often
several times larger than the single-particle superlattice
gap. As a consequence, the low-energy Hilbert space
can be substantially modified by interactions when multi-
ple occupancy of moiré atoms is involved. An accurate
many-body theory for semiconductor moiré systems there-
fore requires a proper treatment of the intra-moiré-atom
interaction.
In this Letter, we predict new physics in semiconductor

moiré systems arising from interaction effects at higher
filling factors. We first develop an approach to modeling
semiconductor moiré systems that treats the short-range
electronic correlations within a single multielectron moiré
atom exactly. We model each moiré atom as a potential well
and solve the interacting few-electron atoms by exact
diagonalization. Our approach is controlled in the “atomic
limit” realized at large moiré period where electrons are
tightly bound to moiré atoms and inter-atomic interactions
can be neglected. For the three-electron atom (moiré
lithium), we find a distinctive equilateral triangle Wigner
molecule charge configuration [see Fig. 1(d)], which is
stabilized by strong interaction and the threefold aniso-
tropic moiré crystal field. We further show that when the
Wigner molecules’ size becomes comparable to the moiré
period, they collectively form an emergent Kagome lattice
of charges at filling factor n ¼ 3 with electrons localized
between moiré potential minima. This emergent Kagome
lattice arises due to the balance between Coulomb inter-
action and moiré potential.
The change of charge configuration from triangular or

honeycomb to Kagome lattice clearly demonstrates that the
low-energy Hilbert space of moiré systems is strongly
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filling dependent due to interaction effects. Our Letter
introduces parametrically controlled approximations for
treating strong electron-electron interactions in semicon-
ductor moiré superlattices and reveals striking conse-
quences of the interplay between quantum kinetic, moiré
potential, and Coulomb interaction energies.
Semiconductor moiré continuum model.—When two

semiconductor TMD monolayers are stacked, a moiré
pattern appears due to lattice mismatch and/or twist angle.
When the moiré period aM is much larger than the
monolayer lattice constant, the single-particle moiré band
structure is accurately described by a continuum model
consisting of an effective mass approximation to the semi-
conductor band edge and a slowly varying effective periodic
potential arising from band edge modulation throughout the
moiré unit cell. In this Letter, we always refer to the doped
carriers as electrons, regardless of the true sign of their
charge. The continuum model Hamiltonian for TMD het-
erobilayers [4] (such as WSe2=WS2 and MoSe2=WSe2) and
twisted Γ-valley homobilayers [22,23] (such as twisted
MoS2) assumes the form

H ¼ p2

2m
þ ΔðrÞ ð1Þ

where ΔðrÞ ¼ −2V
P

3
i¼1 cosðgi · rþ ϕÞ is an effective

moiré potential that has the translation symmetry of the

superlattice in the first harmonic approximation, m
is the effective mass, and gi ¼ ð4π= ffiffiffi

3
p

aMÞ½sinð2πi=3Þ;
cosð2πi=3Þ� are the moiré reciprocal lattice vectors
[Fig. 1(a)]. The minima of ΔðrÞ define a periodic array
of moiré atoms to which doped charge is tightly bound in the
atomic limit which we now examine.
Moiré atoms.—We define an effective Hamiltonian for

an electron confined to a moiré atom by Taylor expanding
ΔðrÞ about the origin:

ΔðrÞ ≈ constþ 1

2
kr2 þ c3 sinð3θÞr3 þ… ð2Þ

where k ¼ 16π2V cosðϕÞ=a2M and c3 ¼ 16π3V sinðϕÞ=
ð33=2a3MÞ. The result is a circular oscillator with frequency
ω ¼ ffiffiffiffiffiffiffiffiffi

k=m
p

along with higher-order, rotation-symmetry-
breaking corrections, which we call the moiré crystal field.
The effective Hamiltonian of an N-electron moiré atom
includes a Coulomb interaction e2=ðϵjri − rjjÞ between all
of its electron pairs.
Both kinetic energy and Coulomb energy favor charge

delocalization, whereas the confinement potential favors
localization. The characteristic length ξ0 ≡ ½ℏ2=ðmkÞ�1=4 at
which the potential and kinetic energies of a harmonically
confined electron are equal defines the size of a single-
electron moiré atom (that is, the extent of its ground state
wave function). We further introduce the length scale at
which the Coulomb and confinement energies of two
classical point charges arranged symmetrically about the
origin of a harmonic potential are equal, ξc ¼ ðe2=2ϵkÞ1=3.
The ratio of these two length scales is directly related to the
dimensionless coupling constant that is the ratio of the intra-
atomic Coulomb energy to the atomic level spacing:
λ≡ ½ðe2=ϵξ0Þ=ℏω� ¼ 2ðξc=ξ0Þ3.
Importantly, the size of the ground state of a few-electron

moiré atom, which we denote as ξ, is on the order of ξ0 for
λ ≪ 1 (weak interaction) and ξc for λ ≫ 1 (strong inter-
action), respectively. Therefore for general λ, we have
ξ ∼maxfξ0; ξcg.
Importantly, we observe that the effective spring constant

weakens with increasing moiré period: k ∝ a−2M . It thus
follows that

ξ0 ≡
�
ℏ2

mk

�
1=4

∝ a1=2M ; ξc ≡
�
e2

2ϵk

�
1=3

∝ a2=3M : ð3Þ

Consequently, at sufficiently large aM, the hierarchy of
length scales aM > ξc > ξ0 is necessarily realized. Then,
the size of the few-electron moiré atom ξ is parametrically
smaller than the distance between adjacent atoms aM so that
intra-atomic Coulomb interaction ∼e2=ξ dominates over
inter-atomic interaction ∼e2=aM. This self-consistently
justifies our treatment of isolated moiré atoms as the first
step to understanding moiré solids. To ground our analysis,
we plot the length scales ξc, ξ0 and the coupling constant λ

(c)

(a) (b)

(d)

FIG. 1. Moiré atoms and Wigner molecules. (a) Schematic of
moiré superlattice and (b) corresponding moiré potential at
ϕ ¼ 10°. Its minima, moiré atoms, form a triangular lattice.
(c) Evolution of each of the high- and low-spin ground states of
harmonic helium and lithium (with two and three electrons
respectively) with the Coulomb coupling constant λ. The overall
ground state of harmonic lithium transitions from low to high spin
at λc ¼ 4.34. (d) Charge density distribution of the high spin
ground state of moiré lithium including a crystal field corre-
sponding to the continuum model parameters (V ¼ 15 meV,
aM ¼ 14 nm, ϕ ¼ 10°, m ¼ 0.5me) without (left) and with
(right) Coulomb interaction.
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as a function of the moiré period aM for three representative
TMD heterostructures in Fig. 2.
We begin by modeling each moiré atom as purely

harmonic, neglecting the influence of the crystal field.
The single-particle eigenstates of the circular oscillator are
labeled by radial and angular momentum quantum numbers
n and l with energy E ¼ ð2nþ jlj þ 1Þℏω. We identify
N ¼ 2nþ jlj þ 1 as the principal quantum number and
refer to the circular oscillator eigenstates using electron
configuration notation accordingly (i.e. s for l ¼ 0 and p
for jlj ¼ 1 states).
It is known rigorously that the ground state of two

electrons with a time-reversal-symmetric Hamiltonian
including a symmetric two-body interaction in arbitrary
spatial dimensions is a spin singlet [25]. For all interaction
strengths, the harmonic helium singlet ground state remains
adiabatically connected to the 1s2, single-Slater-determinant
ground state at λ ¼ 0, and the triplet first-excited state to the
1s12p1 state (see Fig. 1). Although the triplet-singlet energy
gap remains positive for all λ, it asymptotically approaches 0
in the classical limit λ → ∞.
The above theorem does not apply to systems of more

than two electrons. In the absence of a Coulomb interaction
and moiré crystal field, the moiré lithium ground state
configuration is a 1s22p spin doublet with total spin and
angular momentum quantum numbers ðS; LÞ ¼ ð1=2; 1Þ.
At a critical coupling constant λc ≈ 4.34, we find that a
ground state level crossing occurs between this low-spin
doublet and a high-spin quartet state with ðS; LÞ ¼ ð3=2; 0Þ
originating from a 1s12p2 configuration (see Fig. 1) [26,27].
After the level crossing, the energy difference between the
low- and high-spin ground states remains small and
asymptotes to 0 in the classical limit λ → ∞. Since the
energy splittings between the low- and high-spin ground
states of the two- and three-electron moiré atoms are small,
it should be possible to induce first-order spin transitions
with a modest magnetic field [24,28,29].

The classical ground state of three interacting electrons
in a harmonic potential is an equilateral triangle of side
length ξT ¼ ð2= ffiffiffi

3
p Þ1=3ξc centered about the origin that

spontaneously breaks rotational symmetry, a configuration
which we refer to as a trimer. At finite λ, quantum
fluctuation restores rotational symmetry while preserving
the density-density correlations of the electron trimer [27].
On the other hand, the moiré crystal field term sinð3θÞr3
breaks the rotational symmetry explicitly. Since the three-
fold crystal anisotropy matches with the symmetry of the
classical ground state, it stabilizes the triangular “Wigner
molecule” in the presence of a Coulomb interaction. As we
show in Fig. 1(c), the charge density of the ðN; SÞ ¼
ð3; 3=2Þ state in the absence of the Coulomb interaction
(λ ¼ 0) is distorted only mildly by the crystal field,
whereas, at λ ¼ 6, it develops a local minimum at the
origin and three distinct lobes at the corners of an equi-
lateral triangle. The low-spin state S ¼ 1=2 exhibits a
similar density profile in the presence of the crystal field
at moderate and large λ (see Supplemental Material), again
in agreement with the classical limit where spin plays no
role. The unique charge distribution of the Wigner mol-
ecule is a clear consequence of strong interactions and can
be directly observed via a local probe such as scanning
tunneling microscopy [30].
A heuristic argument for the high-spin S ¼ 3=2 ground

state is that, in the semiclassical expansion, three-particle
exchange processes dominate over two-particle exchange
processes since the latter must overcome a large Coulomb
energy barrier associated with relative coordinates whereas
the former need not. Because three-particle exchange
amplitudes are necessarily ferromagnetic [31,32], the
ground state at large coupling constant should be fully
spin polarized.
Moiré solids.—Having established the physics of isolated

moiré atoms, we now turn to their crystalline ensembles:
moiré solids. We reiterate the important observation that the
hierarchy of length scales aM > ξc > ξ0 is necessarily
realized at sufficiently large aM. Equivalently, the energy
scale of the moiré potential depth V necessarily dominates
over inter- and intra-atom Coulomb energies e2=aM, e2=ξ as
well as the quantum zero-point energy ℏω ∝ a−1M associated
with harmonic confinement. As a result, the ground state
in this regime at integer filling n is an insulating array of
n-electron moiré atoms located at the moiré potential
minima, which is adiabatically connected to the decoupled
limit aM → ∞. In this regard, we note that insulating states
at integer fillings up to n ¼ 8 have been observed in the
conduction band of an MoSe2=WS2 moiré superlattice [33].
In the following, we investigate the intermediate regime

aM ∼ ξc > ξ0 and reveal new physics that emerges from
inter-atom coupling. We apply self-consistent Hartree-Fock
theory to the continuum model [Eq. (1)] [34–36], which
treats intra- and inter-atomic interactions on equal footing
and accounts for the full periodic moiré potential. Our

2 5 10 15
 (nm)

0.5

1.0

1.5

2.0

2.5

3.0
le

ng
th

 (n
m

)
quantum solid     Wigner solid

2 5 10 15
 (nm)

2

3

4

5

6

7

WSe /WS
WSe /MoSe
MoSe

FIG. 2. Key parameters for TMD moiré heterostructures.
Length scales ξ0, ξc (left) and coupling constant λ (right) in
the valence bands of several semiconductor moiré systems
calculated according to continuum model parameters extracted
from density functional theory [5,22,24].
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Hartree-Fock calculation, including the direct inversion of
the iterative subspace convergence acceleration method, is
detailed in the Supplemental Material [37]. In particular,
at filling factor n ¼ 3, we find that for realistic model
parameters, electrons self-organize into an emergent
Kagome lattice (Fig. 3). This interaction-induced charge
order is particularly striking, given that the Kagome lattice
sites where electrons localize are saddle points rather than
minima of the moiré potential.
The origin of the emergent Kagome lattice can be

understood in the regime ξ0 ≪ ξc and aM, which is
smoothly connected to the classical limit ξ0 → 0 or
equivalently m → ∞. In this regime, the ground state is
determined by the competition between the moiré potential
and the Coulomb repulsion, which is controlled by the ratio
aM=ξc. As previously discussed, the ground state at large
aM=ξc is a lattice of electron trimers of size ξc separated by
a distance of aM. This charge configuration, which consists
of upper and lower triangles of size ∼ξc and aM respec-
tively, can be viewed as a precursor to the Kagome moiré
solid. As aM=ξc is reduced, the asymmetry in the size of the
upper and lower triangles is naturally reduced, so that the
charge configuration evolves toward the Kagome lattice.
Our Hartree-Fock calculations fully support the above

picture. For generic ϕ, due to the lack of D6 symmetry, the

upper and lower triangles are distinct [Fig. 3(b)], thus
realizing a breathing Kagome lattice. Indeed, the corre-
sponding quasiparticle band structure, Fig. 3(a), resembles
the Kagome lattice dispersion with broken inversion
symmetry. As we show explicitly (see Supplemental
Material [37]), the three lowest quasiparticle bands are
adiabatically connected to the s and px, py bands on a
triangular lattice (as evidenced by the twofold degeneracy
at the γ point). This fully agrees with our picture of a
Wigner molecule array evolving into a breathing Kagome
lattice.
Even more interesting is the case ϕ ¼ 60° as realized in

twisted Γ valley TMD homobilayers. Here, the underlying
moiré potential has two degenerate minima per unit cell
forming a honeycomb lattice with D6 symmetry. At the
filling factor n ¼ 3, our Hartree-Fock calculation finds that
charge assembles into a perfectly symmetric Kagome lattice
[Fig. 3(d)]. This is confirmed by the appearance of a Dirac
point in the Hartree-Fock band structure [Fig. 3(c)]. Note
that the Kagome band structure found here describes the
dispersion of hole quasiparticles in the interaction-induced
insulator at n ¼ 3. In contrast, the noninteracting band
structure at ϕ ¼ 60°, shown in Fig. 4, is gapless at this
filling. In addition, the Kagome moiré solid features a
symmetry-protected band degeneracy at γ below the Fermi
level, which is absent in the noninteracting case.
It is interesting to note that the emergent Kagome lattice

of charges minimizes neither the potential energy nor the
Coulomb interaction energy. The potential energy favors
charges localized at honeycomb lattice sites, while the
Coulomb interaction favors a triangular lattice Wigner
crystal. Yet, remarkably, our calculations demonstrate that
the Kagome lattice emerges as a compromise due to their
close competition for realistic material parameters.
Although our Hartree-Fock results shown in Fig. 3 are

for fully spin-polarized electrons, the emergent Kagome
insulator at n ¼ 3 persists regardless of its spin configu-
ration provided that ξc is comparable to aM and sufficiently
large compared to ξ0. In this correlated insulating state,

(a) (b)

(c) (d)

FIG. 3. Emergent Kagome lattice at n ¼ 3. (a) Quasiparticle
band structure of self-consistent Hartree-Fock ground state with
charge and spin density quantum numbers ðn; szÞ ¼ ð3; 3=2Þ,
resembling a Kagome lattice with broken inversion symmetry, i.e.
a breathing Kagome lattice. Here we show only the spin-↑ bands.
(b) Corresponding real space electron density, exhibiting peaks
that approximately form a Kagome lattice. A is the moiré unit
cell area. The parameters used are V ¼ 15 meV, ϕ ¼ 30°,
m ¼ 0.5me, aM ¼ 8 nm, and ϵ ¼ 5. (c),(d) Results for ϕ ¼
60° where the continuum model is D6 symmetric and a perfect
Kagome lattice emerges at n ¼ 3. Blue triangles in (b) and
(d) indicate triangular Kagome plaquettes.

(a) (b)

FIG. 4. Noninteracting bands. Noninteracting band structure
and charge density at n ¼ 3 for continuum model parameters
(V ¼ 15 meV, ϕ ¼ 60°, m ¼ 0.5me, aM ¼ 8 nm, ϵ ¼ 5),
which contrasts sharply with the interacting case shown in
Figs. 3(c) and 3(d).
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the low energy degrees of freedom are localized spins
whose coupling is an interesting problem that we leave to
future study.
We now return to the key length scales and coupling

constants of real semiconductor moiré systems shown in
Fig. 2. As the coupling constant λ increases with aM, the
ground state at integer fillings evolves from a quantum solid
where quantum effects dominate to a Wigner solid where
classical effects dominate. In WSe2=WS2, the change
between the two regimes corresponding to ξc ¼ ξ0 occurs
around aM ∼ 4.8 nm. In twisted homobilayer MoSe2, we
find ξc > ξ0 at all values of aM shown, owing in part to its
larger effective mass at the Γ valley [22,23]. Twisted Γ
valley homobilayers (WS2, MoS2, and MoSe2) also have
moiré potentials with an emergent D6 symmetry [22],
making them ideal candidates to realize the emergent
Kagome solid at small twist angle.
Our demonstration of the emergent Kagome lattice in

TMD moiré heterostructures paves the way for future
investigation of magnetic and topological phases it may
host. The geometric frustration of antiferromagnetic
Heisenberg model on the Kagome lattice makes it a
promising candidate for quantum spin liquid [43–47].
The prospect that our emergent Kagome lattice may host
such a phase deserves further investigation.
Summary.—Our Letter provides analytically controlled

methods to treat strong interaction effect in moiré super-
lattices and reveals novel phases of matter at higher filling
factors n > 1. We have identified three key length scales
that universally govern the physics of all moiré materials:
the moiré superlattice constant aM, the quantum confine-
ment length ξ0, and crucially, the size of Wigner molecule
ξc. ξ0 characterizes the strength of quantum kinetic energy,
and ξc the strength of Coulomb interaction.
We have established two parameter regions in which

theoretical analysis is controlled even for strong inter-
actions. First, when aM ≫ ξ0; ξc, moiré atoms can be
always treated in isolation regardless of the ratio ξc=ξ0.
By exactly solving the few-electron state of a single moiré
atom, we have predicted the existence of the Wigner
molecule. Second, when ξ0 ≪ ξc; aM, a self-organized
electron lattice is formed to minimize the sum of potential
and interaction energy. In particular, we predict an emergent
Kagome lattice at the filling n ¼ 3 for realistic material
parameters that correspond to ξc ∼ aM. More generally,
when ξ0 ≪ ξc, the intra-atomic interaction e2=ðϵξ0Þ
exceeds the single-particle band gap ℏω, hence the effective
Hamiltonian cannot be correctly obtained by projecting the
interacting continuum model into the lowest moiré band.
The interplay of the three length scales aM, ξ0, and ξc, in
combination with tunable electron filling n, presents a vast
phase space and an organizing principle to explore moiré
quantum matter.
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Rev. B 104, 214403 (2021).

[35] Y.-M. Xie, C.-P. Zhang, J.-X. Hu, K. F. Mak, and K. T. Law,
Valley-polarized quantum anomalous Hall state in moiré
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