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There is no simple fluctuation-dissipation theorem (FDT) for nonequilibrium systems. We show that for
a fluid in a nonequilibrium steady state (NESS) characterized by a constant temperature gradient there is a
generalized FDT that relates commutator correlation functions to the bilinear response of products of
observables. This allows for experimental probes of the long-range correlations in such a system, quantum
or classical, via response experiments. We also show that the correlations are not tied to thermal
fluctuations but are intrinsic to the NESS and reflect a generalized rigidity.
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A fundamental result of equilibrium statistical mechanics
is the fluctuation-dissipation theorem, which states that the
system’s linear response to an external perturbation is
related to the fluctuations in the equilibrium state [1,2].
Specifically, the response functions are proportional to the
corresponding correlation functions, and in a classical
system the proportionality factor is simply the inverse
temperature [3]. In a nonequilibrium system, this is no
longer true. There is a substantial body of work on the
properties of fluctuations far from equilibrium (see, e.g.,
Refs. [4,5] and references therein), on linear response in
nonequilibrium systems [6], and on aspects of relations
between the two [5,7,8], but there is no general prescription
for probing fluctuations via the response to external
perturbations. Consequently, fluctuations can be observed
only via scattering experiments, which become increas-
ingly difficult as the temperature is lowered, but not via the
linear response to a macroscopic perturbation. One of the
main results reported in this Letter is that for a fluid,
classical or quantum, in a nonequilibrium steady state
(NESS) characterized by a fixed temperature gradient there
still is a relation between fluctuations and response, but it is
not linear. Rather, the nonequilibrium parts of the corre-
lation functions determine the bilinear response of products
of observables to external perturbations, as we will dem-
onstrate in Eqs. (14) and (18) below. Since perturbations
can be controlled experimentally independent of other
parameters, this opens new avenues for observing corre-
lations, especially in quantum fluids, where thermal fluc-
tuations are weak due to the low temperature. In addition,
we elucidate several other aspects of fluids in such a NESS,
especially in the quantum limit.
To motivate our investigations, we recall that classical

simple fluids subject to a fixed temperature gradient harbor
correlations that are extraordinarily long ranged [9–11]. For
instance, the equal-time temperature-temperature correlation

function diverges for small wave numbers k as 1=k4. In real
space, this corresponds to correlations that extend over the
entire width of the sample and decay on the same scale [11].
These correlations are generic in the sense that they do not
require any fine-tuning of parameters, and they are not related
to any broken symmetry. Rather, they are the result of the
coupling of the temperature fluctuations to the diffusive shear
velocity. This surprising result has been confirmed theoreti-
cally by means of a variety of techniques [11–13], and it has
been observed by many light scattering experiments; see
Ref. [14] and references therein.
Despite being well established and confirmed, this

phenomenon raises several questions that historically have
not been emphasized. One is the fact, mentioned above,
that the relevant correlation functions in a NESS are not in
any obvious way related to response functions. Another
question is whether the long-ranged correlations are tied to
thermal fluctuation effects, or whether they are more
generic and reflect some type of generalized rigidity [15]
that is present even in the zero-temperature limit and also
manifests itself in the response of the system to external
perturbations. Recent work on classical fluids has sug-
gested the latter [16], but a relation between correlation
functions and response theory has been lacking. Part of the
purpose of this Letter is to provide such a relation.
The missing correlation-response relation discussed above

is equally relevant for classical and quantum fluids, but it
poses a particularly significant problem for the latter [17].
Direct measurements of the correlation functions via light
scattering are difficult even in the classical case because of
the very small scattering angles required. With decreasing
temperature the fluctuations become smaller, which makes it
even more desirable to observe the effect via response
experiments, if feasible. Specifically, there are two obvious
types of correlation functions: symmetrized, or anticommu-
tator correlation functions that we denote by Ssym, and
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antisymmetrized, or commutator ones that we denote by χ00
(this is the customary notation for the commutator correla-
tion function [3], with the double prime indicating that this is
the spectrum, or spectral density, of a causal function). As
functions of the wave vector k and the frequency ω, they are
defined by [3,23]

1

2

��
δÂðk1;ω1Þ; δB̂ðk2;ω2Þ

�
þ

�

¼ Vδk1;−k22πδðω1 þ ω2ÞSsymAB ðk1;ω1Þ; ð1aÞ

1

2ℏ

��
δÂðk1;ω1Þ; δB̂ðk2;ω2Þ

�
−

�

¼ Vδk1;−k22πδðω1 þ ω2Þχ00ABðk1;ω1Þ: ð1bÞ

Here, δÂ, δB̂ are operator-valued fluctuations of observables,
½; �þ and ½; �− denote anticommutators and commutators,
respectively, h…i denotes a quantum mechanical expect-
ation value plus a statistical mechanics average, and V is the
system volume. We use carets to denote operator-valued
quantities (and below also to denote unit vectors; this should
not lead to confusion); the corresponding quantities without
carets are number-valued classical objects. The two types of
correlation functions are related by

SsymAB ðk;ωÞ ¼ χ00ABðk;ωÞℏ cothðℏω=2TÞ: ð2Þ

Here, and throughout the Letter, we put kB ¼ 1; i.e., we
measure the temperature in units of energy. We note that the
exact relation between Ssym and χ00 is more complicated in
systems that are not spatially homogeneous. It reduces to
Eq. (2) if the local temperature is replaced by its spatial
average. The corresponding static correlation functions are

SsymAB ðkÞ ¼
Z

∞

−∞

dω
2π

SsymAB ðk;ωÞ; ð3aÞ

χABðkÞ ¼
Z

∞

−∞

dω
π

χ00ABðk;ωÞ=ω: ð3bÞ

The symmetrized correlation functions SsymAB are observable
by means of scattering experiments [3]. The physical
meaning of the antisymmetrized correlation functions χ00AB
is a priori less obvious. In an equilibrium system, where the
correlations are generically short ranged, they describe the
linear response of the system to external fields, as follows.
Let hB be the external field conjugate to B̂. Then to linear
order in the fields, one has [3]

δhÂiðk;ωÞ ¼ χABðk;ωÞhBðk;ωÞ; ð4Þ

where χABðk;ωÞ ¼
R
∞
−∞ dxχ00ABðk; xÞ=ðx − ω − i0Þ with i0

an infinitesimal imaginary part. That is, the equilibrium
fluctuations determine the linear response, which to second

order in the external field yields the energy dissipated by the
system. This is the content of the fluctuation-dissipation
theorem [1,2]. In a NESS, the relation (2) still holds (if the
local temperature is replaced by its spatial average T), but
the commutator correlations functions no longer describe the
linear response, and the usual fluctuation-dissipation theo-
rem breaks down.
In this Letter, we identify the quantum analogs of the

classical long-ranged correlations. Our two main results
are (1) the long-ranged commutator correlation functions
are still related to response functions, but the relation is not
a simple proportionality. Rather, the nonequilibrium con-
tributions to the correlation functions are related to the
bilinear response of products of observables; see Eqs. (14)
and (18) below. (2) In a modified form, the long-ranged
correlations extend to zero temperature. This shows that
they are not tied to thermal fluctuations, although thermal
fluctuations can be used to probe them. Rather, they are an
inherent long-wavelength property of the NESS and indeed
reflect a novel type of generalized rigidity that does not
become weaker with decreasing temperature. We will start
by explaining the second result, and then demonstrate the
first one.
Consider a fluid confined between two plates that is

subject to a constant temperature gradient ∇T in the z
direction; see Fig. 1. Let k be the wave vector of a
temperature fluctuation, and let the wave-vector space be
spanned by three mutually perpendicular unit vectors

k̂ ¼ k=k, k̂⊥, and k̂ð2Þ⊥ such that k̂⊥ is coplanar with k
and ∇T. For our purposes, the temperature gradient will
appear in the combination ∇⊥T ≡ k̂⊥ · ∇T. For definite-
ness, we consider a fermionic quantum fluid (e.g., con-
duction electrons in metals). Analogous effects must be
present in bosonic fluids as well, but at asymptotically low
temperatures, Bose-Einstein condensation will lead to
complications that require additional investigation. Let τ

FIG. 1. A fluid subject to a constant temperature gradient in the

z direction between two parallel confining plates. k̂, k̂⊥, and k̂ð2Þ⊥
are unit vectors that span the wave-number space, with the
coordinate system chosen such that k̂ and k̂⊥ are coplanar with
the temperature gradient.
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be the relaxation time, vF the Fermi velocity, and ω the
frequency. We need to distinguish between the hydro-
dynamic regime, where ω < 1=τ or vFk < 1=τ, and the
collisionless regime where ω > 1=τ. The latter is in general
subdivided into regimes where ℏω < T and ℏω > T,
respectively; see Fig. 2 [24]. Here, T is the spatially
averaged temperature [26]. We are interested in the corre-
lation functions for the temperature T and the component
u⊥ ≡ k̂⊥ · u⊥ of the fluid shear velocity u⊥. The nature of
the latter changes from diffusive to propagating as one goes
from the hydrodynamic regime to the collisionless one. In
the latter, a hydrodynamic description no longer applies,
and one has to work with a quantum kinetic theory. In what
follows, we first state our results and then comment on their
derivations. For details see the Supplemental Material [27].
Hydrodynamic regime.—In the hydrodynamic regime,

one has ω < 1=τ < T=ℏ [24], and the correlation functions
are the same as in a classical fluid. In particular, SsymAB
becomes a classical correlation function hABi with the
angular brackets denoting a classical statistical mechanics
average, and we have [9]

SsymTT ðk;ωÞ ¼ 2T2

cV

DTk2

ω2 þ ðDTk2Þ2

þ ð∇⊥TÞ2
2T
ρ

νk2

½ω2 þ ðDTk2Þ2Þðω2 þ ðνk2Þ2� :

ð5aÞ

The first term is the standard equilibrium contribution, and
the second term is the long-ranged NESS contribution. cV
and ρ are the spatially averaged specific heat per volume
and the fluid mass density, respectively, and DT and ν are
the spatially averaged heat diffusion coefficient and kin-
ematic viscosity, respectively. The velocity-velocity corre-
lation function is the same as in equilibrium,

Ssymu⊥u⊥ðk;ωÞ ¼
2T
ρ

νk2

ω2 þ ðνk2Þ2 ; ð5bÞ

and the mixed symmetrized correlation functions are

Ssymu⊥Tðk;ωÞ ¼ SsymTu⊥ð−k;−ωÞ

¼ ∇⊥T
1

ρ

νk2

ω2 þ ðνk2Þ2
2T

iωþDTk2
: ð5cÞ

The corresponding commutator correlation functions are
given by Eq. (2) with ℏ cothðℏω=2TÞ ≈ 2T=ω:

χ00ABðk;ωÞ ¼ SsymAB ðk;ωÞω=2T ðA; B ¼ T; u⊥Þ: ð5dÞ

The static correlation functions are

SsymTT ðkÞ ¼ T2

cV
þ Tð∇⊥TÞ2
ρDTðνþDTÞk4

; ð6aÞ

Ssymu⊥u⊥ðkÞ ¼ T=ρ; ð6bÞ

Ssymu⊥TðkÞ ¼ SsymTu⊥ð−kÞ ¼ ∇⊥T
T=ρ

ðνþDTÞk2
; ð6cÞ

and

χABðkÞ ¼ SsymAB ðkÞ=T ðA;B ¼ T; u⊥Þ: ð6dÞ

SsymTT ðkÞ in Eq. (6a) is the equal-time temperature-
temperature correlation function mentioned in the intro-
duction that diverges as 1=k4. This result is exactly the
same as for a classical fluid, as expected in the hydro-
dynamic regime.
Collisionless regime.—In the collisionless regime, the

expressions for the dynamic correlation functions are
lengthy and are given in the Supplemental Material, together
with an outline of their derivations [27]. Here we give only
the results for the static temperature-temperature correla-
tions. To leading order as T → 0, we have

χTTðkÞ ¼
1

NF

3

π2

�
1þ π2

12
ð2π2 − 3Þ ð∇⊥TÞ2

ϵ2Fk
2

�
ð7Þ

everywhere in the collisionless regime. Here NF is the
density of states at the Fermi level, and ϵF is the Fermi
energy. The symmetrized correlation function is SsymTT ðkÞ ¼
TχTTðkÞ in collisionless regime #1 in Fig. 2 and, apart
from a factor of Oð1Þ, SsymTT ðkÞ ≈ vFkχTTðkÞ in collisionless
regime #2.
To derive these results, we note that in the hydrodynamic

regime the usual Navier-Stokes equations are applicable,
as they are based on very general physical principles, viz.,
the conservation laws for mass, momentum, and energy
combined with force-balance considerations [19,28,29].
Consequently, they hold for quantum fluids as well as
for classical ones. In order to calculate correlation func-
tions, they need to be augmented by fluctuating forces
[18,19]. Of the various nonlinearities, we need to keep only
the crucial coupling between the temperature fluctuation
and the transverse velocity, which turns into a linear term in
the presence of a fixed temperature gradient. We can further
ignore pressure fluctuations, which lead to sound waves (or
plasmons in a charged Fermi liquid) that are much faster
than the diffusive shear fluctuations. The equations for the

FIG. 2. Frequency regimes. The hydrodynamic regime is
characterized by a diffusive shear velocity, with the frequency
ω scaling as the wave number squared. In the collisionless
regimes, the shear velocity is a propagating mode with the
frequency scaling linearly with the wave number.
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operator-valued temperature and shear velocity then are

ð−iωþ νk2Þû⊥ðk;ωÞ ¼ P̂⊥ðk;ωÞ; ð8aÞ

ð−iωþDTk2ÞT̂ðk;ωÞþð∇⊥TÞû⊥ðk;ωÞ¼ Q̂ðk;ωÞ: ð8bÞ

Here the transport coefficients ν and DT are to be under-
stood as having been spatially averaged. P̂⊥ and Q̂ are
operator-valued fluctuating forces that are Gaussian dis-
tributed with zero mean. Their second moments can be
obtained from the somewhat more general expressions
derived in Ref. [18] and are given explicitly in the
Supplemental Material [27]. The u⊥ − u⊥ correlation then
is determined by the P⊥ correlation and given by Eq. (5b).
This is the same as in equilibrium since the temperature
does not couple into the u⊥ equation. The equilibrium part
of the T-T correlation is given by the Q correlation,
whereas the nonequilibrium part, as well as the mixed
T-u⊥ correlation, is given in terms of the u⊥ fluctuation,
with ∇⊥T serving as a coupling constant. This yields the
second term in Eqs. (5a) and (5c). The leading singularity
in the static T-T correlation function is 1=k4, and 1=k2 in
the T-u⊥ correlation function, as in a classical fluid. This is
because the hydrodynamic equations are the same in
either case.
In order to properly describe the collisionless regime,

one has to work with the fluctuating quantum kinetic theory
developed in Ref. [18]; see the Supplemental Material for a
derivation [27]. However, the qualitative features of the
results can be obtained from simple scaling arguments as
follows. In the collisionless regime, the diffusive inverse
propagators of the form D−1ðk;ωÞ ¼ ωþ iDk2 that appear
on the left-hand sides of Eqs. (8), where D can represent
either ν orDT, effectively turn into propagating zero modes
of the formω ∓ ck, with c ≈ vF the propagation speed. The
transport coefficients thus effectively become singular
functions of the wave number and scale as D ∼ vF=k.
The low-temperature result for χTT, Eq. (7), then follows
from Eq. (6a) by replacing ν, DT → vF=k and using the
low-temperature expression for the specific heat cV ∝ NFT
(prefactors, as well as issues regarding reality and signs,
require a more detailed analysis). For the symmetrized
correlation function one needs to consider the frequency
integral in Eq. (3a) and recognize that for the equilibrium
contribution it needs to be cut off at ω ≈DTk2. In the limits
DTk2 ≪ T=ℏ and DTk2 ≫ T=ℏ, and using again the
effective scaling of DT and ν explained above, one then
obtains the relations between SsymTT ðkÞ and χTTðkÞ given
after Eq. (7).
As mentioned above, the commutator functions χ00 do not

determine the linear response of the NESS to external
perturbations, in contrast to an equilibrium system. In order
to determine the response functions, we consider the
averaged Navier-Stokes equations in the presence of a
field hu⊥ conjugate to u⊥:

ð−iωþ νk2Þu⊥ðk;ωÞ ¼
ν

ρ
k2hu⊥ðk;ωÞ; ð9aÞ

ð−iωþDTk2ÞδTðk;ωÞ þ ð∇⊥TÞu⊥ðk;ωÞ

¼ 1

ρ
ð∇⊥TÞhu⊥ðk;ωÞ: ð9bÞ

To avoid misunderstandings, we stress that these are
equations for averaged, classical fluctuations δT and u⊥.
They are the standard Navier-Stokes equations [19] except
that the sound modes have been omitted since they occur on
timescales much faster than the diffusive shear and temper-
ature fluctuations. They are driven by an external field hu⊥
that essentially represents a shift of the velocity reference
frame and can be regarded as a field conjugate to u⊥
[28,30]. It can be experimentally realized by imposing a
shear velocity on the system. For a derivation from kinetic
theory, see Ref. [31]. The response functions XABðk;ωÞ are
defined by

u⊥ðk;ωÞ ¼ Xu⊥u⊥ðk;ωÞhu⊥ðk;ωÞ; ð10aÞ

δTðk;ωÞ ¼ XTu⊥ðk;ωÞhu⊥ðk;ωÞ: ð10bÞ

From Eqs. (9), we find

Xu⊥u⊥ðk;ωÞ ¼
1

ρ

νk2

−iωþ νk2
; ð11aÞ

XTu⊥ðk;ωÞ ¼
1

ρ
ð∇⊥TÞ

1

−iωþDTk2
−iω

−iωþ νk2
: ð11bÞ

From Eqs. (5b) and (11a), we see that the spectrum [32] of
Xu⊥u⊥ , X

00
u⊥u⊥ðk;ωÞ ¼ ImXu⊥u⊥ðk;ωÞ equals the commuta-

tor correlation function χ00ðk;ωÞ, as expected. However, the
spectrum of XTu⊥ ,

X00
Tu⊥ðk;ωÞ ¼ −ð∇⊥TÞ

ωðνDTk2 − ω2Þ
ðω2 þD2

Tk
4Þðω2 þ ν2k4Þ ; ð12Þ

while showing the same scaling behavior as χ00Tu⊥ [see
Eqs. (5c) and (5d)] is not identical to the latter. In particular,
the static response function vanishes,

XTu⊥ðkÞ ¼
Z

dω
π

X00
Tu⊥ðk;ωÞ

ω
¼ 0; ð13Þ

while the static correlation function is nonzero; see
Eq. (6c). Nonetheless, the response functions still provide
a way to directly measure the commutator correlation
functions, without relying on their symmetrized counter-
parts that are suppressed at low temperatures. Specifically,
considering Eqs. (10), (11), (5c), and (5d), we have
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δTðk;ωÞu⊥ð−k;−ωÞ ¼
i
ρ
χ00Tu⊥ðk;ωÞjhu⊥ðk;ωÞj2: ð14Þ

That is, the commutator T-u⊥ correlation function
describes the bilinear response of the product of the
temperature and the shear velocity to the field conjugate
to u⊥. Similarly, the nonequilibrium part of the commutator
T-T correlation function can be expressed as a bilinear
response to the field hu⊥ . We define an observable

T̃ðk;ωÞ ¼ Tðk;ωÞ − 1

ρ
ð∇⊥TÞ

1

−iωþDTk2
hu⊥ðk;ωÞ ð15Þ

that obeys the equation

ð−iωþDTk2ÞδT̃ðk;ωÞ þ ð∇⊥TÞu⊥ðk;ωÞ ¼ 0: ð16Þ

The physical interpretation of Eq. (16) is the heat equation
with a streaming term that contains the absolute shear
velocity, whereas Eq. (9b) contains the shear velocity
relative to the field hu⊥ . The response of T̃ to the field
hu⊥ is given by a response function

XT̃u⊥ðk;ωÞ ¼
1

ρ
ð∇⊥TÞ

−1
−iωþDTk2

νk2

−iωþ νk2
: ð17Þ

From Eqs. (17), (11b), (5a), and (5d), we find that the
nonequilibrium part of the commutator T-T correlation
function describes the bilinear response of the product of T̃
and T to the field hu⊥ :

δT̃ðk;ωÞδTð−k;−ωÞ ¼ i
ρ
χ00neqTT ðk;ωÞjhu⊥ðk;ωÞj2: ð18Þ

Equations (14) and (18) constitute our main result. They
demonstrate that in a NESS characterized by a constant
temperature gradient, the commutator correlation functions
for the temperature and the shear velocity are still related to
the response of the system to an external shear perturbation,
even though the usual fluctuation-dissipation theorem is not
valid. In contrast to the situation in equilibrium, where the
correlation functions are the same as the response func-
tions, in a NESS the correlation functions are given by the
bilinear response of products of observables. We note that
Eqs. (14) and (18) involve the nonequilibrium parts of the
correlation functions only. For ΔT → 0, χ00Tu⊥ vanishes and
χ00TT reduces to its equilibrium part that obeys the usual
fluctuation-dissipation theorem.
To summarize, we have established a relation between

correlation functions and response functions for a fluid in a
NESS. The resulting NESS fluctuation formulas (14) and
(18) resemble the equilibrium fluctuation-dissipation theo-
rem, Eq. (2) in the hydrodynamic limit, with the sym-
metrized correlation function replaced by the product of
two averaged observables, and the temperature replaced by

the driving field squared. The latter one has control over
regardless of how low the temperature is, since the driving
field is realized by an imposed shear velocity. We stress that
we have derived this relation between the fluctuation
functions and the response functions only for the special
case of a constant temperature gradient. Their structure
suggests that they might hold for more general nonequili-
brium states as well, but whether or not that is true is an
open question. We also have determined the quantum
analogs of the long-ranged correlations known to exist
in a classical fluid in a NESS. In the latter context, we note
that in a fermionic quantum fluid there potentially (depend-
ing on the values of the Landau Fermi-liquid parameters)
are many other zero modes that also display ω ∼ k scaling,
in addition to the shear velocity. These can change the
prefactor of the singularity, but not the scaling behavior.
Also, in a charged Fermi liquid (e.g., conduction electrons
in metals) the first-sound mode turns into the massive
plasmon, so our approximation of neglecting pressure
fluctuations is valid a fortiori.
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