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The ground-state phases of a quantummany-body system are characterized by an order parameter, which
changes abruptly at quantum phase transitions when an external control parameter is varied. Interestingly,
these concepts may be extended to excited states, for which it is possible to define equivalent excited-state
quantum phase transitions. However, the experimental mapping of a phase diagram of excited quantum
states has not yet been realized. Here we present the experimental determination of the excited-state phase
diagram of an atomic ferromagnetic quantum gas, where, crucially, the excitation energy is one of the
control parameters. The obtained phase diagram exemplifies how the extensive Hilbert state of quantum
many-body systems can be structured by the measurement of well-defined order parameters.
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Last century’s experimental advancement to cool quan-
tum systems close to absolute zero temperature, where
thermal fluctuations are frozen out, has led to a revolution
in the understanding of quantum phases and phase tran-
sitions [1]. Nowadays, quantum systems may be shielded
from the surrounding environment to prevent thermaliza-
tion. As a result, it is possible to investigate the properties
and dynamics of quantum systems in states different than
the ground state. Major theoretical efforts, followed by
experimental demonstrations, have focused on extending
the concept of quantum phases and phase transitions to the
realm of excited states. This includes dynamical systems,
where phase transitions can be associated with a sudden
change of the long-term average of observables [2–7]. The
dynamics can also result in a sudden change of oscillatory
behavior, termed time crystal [8,9], and can show universal
features [10–12]. Furthermore, in open quantum systems,
the interplay between driving and dissipation may lead to
dissipative phase transitions, characterized by a sudden
change of the steady-state properties [13].
Interestingly, isolated quantum systems may present so-

called excited-state quantum phase transitions (ESQPTs).
At these transitions, occurring at a particular excitation
energy, there is a qualitative change in the nature of the

excited states, which hence form well differentiated
excited-state quantum phases [14]. The presence of
ESQPTs, with their characteristic divergence of the density
of states, has been experimentally revealed in microwave
Dirac billiards [15] and molecular spectra [16–19].
However, despite some theoretical proposals that have
identified possible order parameters in some scenarios
[20–24], the experimental mapping of an excited-state
phase diagram by measuring appropriate order parameters
remains an open challenge in any physical platform.
Coherent spin dynamics has been studied in different

ultracold-gases scenarios, including experiments on exter-
nal [25] and internal [26] Josephson oscillations, where
distinct dynamical regimes were observed depending on
the state initialization. Coherent spin dynamics has been
also experimentally studied in an atomic spinor Bose-
Einstein condensate (sBEC) [27], where also different
dynamical regimes are expected as a function of the initial
conditions [28,29]. Interestingly, these different dynamical
regimes could be linked with the idea of excited-state
phases [23]. However, as for other physical systems, also
for ultracold gases, the experimental mapping of the
corresponding excited-state phase diagram has not been
achieved so far.
In this Letter, we experimentallymap out the excited-state

phase diagram of a ferromagnetic F ¼ 1 sBEC. In this
system, ground-state phase transitions may be driven by the
variation of the quadratic Zeeman energyq, which acts as the
control parameter [29–32]. Recent experiments, performed
with a sodium sBEC [33], have revealed a modification of
the spin dynamics closely associated with an ESQPT, but
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were limited to changing q of the highest-energy level.
In contrast to ground-state (or highest-state) transitions,
general ESQPTs can be crossed not only by varying q, but
also as a function of the excitation energy, which serves as a
second control parameter. This is achieved in our experi-
ments by creating coherent-state spin superpositions with an
energy that can be carefully adjusted by both the population
of the spin states and their relative phase. We characterize
each point of the diagram by means of an interferometric
order parameter inspired by Ref. [23], but robust with
respect to magnetic field noise. With the help of this order
parameter, we obtain the complete excited-state phase
diagram as a function of the two control parameters, clearly
identifying the three distinct excited-state quantum phases.
We initially prepare an sBECof7 × 104 rubidiumatoms in

the hyperfine state jF;mi ¼ j1; 0i in a crossed-beam optical
dipole trap. The spin dynamics, characterized by the creation
and annihilation of pairs of atoms in j1;�1i, is modeled by
the Hamiltonian in single-mode approximation [29]

Ĥ ¼ qðN̂þ1 þ N̂−1Þ −
Ω
N

��
N̂0 −

1

2

�
ðN̂þ1 þ N̂−1Þ

þ â†1â
†
−1â0â0 þ â†0â

†
0â1â−1

�
; ð1Þ

where â†m and âm are the bosonic creation and annihilation
operators for state m, and N̂m ≡ â†mâm with

P
m N̂m ¼ N.

The interaction strength Ω ¼ h × 13.9 Hz is experimen-
tally determined and depends on the atom number, the spa-
tial wave function, and the atomic properties. Note that we
assume the magnetization-free subspace, hNþ1−N−1i¼0,
which eliminates the influence of the linear Zeeman effect.
The quadratic Zeeman energy (QZE) q is initially positive,
but can be adjusted to positive and negative values by a
microwave dressing field [34].
The Hamiltonian (1) features three ground-state phases

[29,35] depending on the QZE: (i) the twin-Fock (TF)
phase for q=Ω < −2, (ii) the polar (P) phase for q=Ω > 2,
and (iii) the intermediate broken-axisymmetry (BA) phase
for jq=Ωj < 2. Figure 1(a) shows the energy of the ground
state and a series of exemplary excited states, as obtained
by exact diagonalization from Eq. (1) [23]. The vanishing
gap between the ground and first excited state at q=Ω ¼ �2
marks the ground-state phase transitions.
A vanishing gap between adjacent energy eigenstates

persists also at increasing excitation energy per particle η ¼
hĤi=ðΩNÞ − η0 with the ground state energy η0, but shifts
towards smaller jq=Ωj. This diverging density of states
marks the ESQPTs, which separate the excited-state spec-
trum into three qualitatively different excited-state phases.
In analogy with the ground-state phase labels, we denote
these phases as twin-Fock-like (TF0), broken-axisymmet-
ric-like (BA0), and polar-like (P0). Note that contrary to the
ground-state transitions, or the equivalent transition in the

most energetic excited state [33], the ESQPTs can be
crossed not only by quenching q [Figs. 1(b) and 1(c)], but,
crucially, also by a controlled change of the excitation
energy η at a fixed q value [Figs. 1(c) and 1(d)].
The main purpose of this work is to experimentally

determine the three excited-state phases at an arbitrary
excitation energy. This requires, in addition to the introduc-
tion of an appropriate robust order parameter discussed
below, the capability of preparing states with a controllable
and well-defined nonzero energy. The sBEC is initialized in
the state j1; 0i at the desiredQZEq by a sudden quenchof the
microwave dressing field. Subsequently, the energy is set by
a variable population transfer and phase adjustment which
generate a coherent spin state. Resonant radio-frequency
(RF) radiation couples the level j1; 0i to the symmetric
superposition jgi≡ ð1= ffiffiffi

2
p Þðj1; 1i þ j1;−1iÞ with a Rabi

frequency ΩR. The RF pulse duration τ adjusts a relative
population n0ðτÞ ¼ cos2ð1

2
ΩRτÞ in level j1; 0i. The resulting

state can be visualized on the generalized Bloch sphere for
the two levels j1; 0i and jgi. The antisymmetric super-
position jhi≡ ð1= ffiffiffi

2
p Þðj1; 1i − j1;−1iÞ is not populated

and therefore remains negligible under the action of
Eq. (1). The relative phase difference φ between jgi and
j1; 0i, i.e., the azimuthal angle of the Bloch sphere, can be
adjusted from its reference valueφ ¼ −π=2 directly after the
RF pulse to any chosen value by an off-resonant microwave
pulse addressing the j1; 0i ↔ j2; 0i transition. The created
state is not a single, stationary eigenstate, but a superposition
of excited eigenstates within a narrow energywindow,which
allows sampling the phase diagram with high resolution.

FIG. 1. Excited-state quantum phase diagram. (a) Three excited-
state quantum phases TF0 (twin-Fock-like; red, left), BA0 (broken-
axisymmetric-like; orange, center), and P0 (polar-like; blue, right)
appear for two control parameters, the excitation energyper particle
η and the quadratic Zeeman energy q. Gray lines represent the
eigenenergies of Eq. (1) calculated for N ¼ 70 000 atoms, where
every 500th eigenvalue is plotted. The excited-state quantum phase
transitions (ESQPTs) are indicated by a light yellow line and the
ground-state quantum phase transitions are highlighted by light
yellow dots. (b)–(d) Bloch-sphere trajectories for control para-
meters indicated in (a).
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After preparation, spin-changing collisions result in a time
evolution according to Eq. (1), as visualized on the Bloch
spheres in Figs. 1(b)–1(d). The different excited-state quan-
tum phases are characterized by trajectories of differing
topology. Besides the fixed points, the dynamics always
leads to an oscillation of the population with variable
amplitude, while the phase evolution is either bounded
(BA0 phase) or stretches over a full 2π rotation, either in
positive (P0) or negative (TF0) direction. If the initial state is
prepared at n0 ¼ 0.5 and φ ¼ 0, the state evolves according
to the trajectories in Figs. 2(a)–2(c). The highlighted asso-
ciation with the excited-state quantum phase can be deter-
mined from ameasurement of the azimuthal phase after a full
oscillation cycle of the population, which is π, 0, and −π for
the P0, BA0, and TF0 phases [23].
A direct measurement of this phase by an RF pulse is

hindered by the detrimental effect of magnetic-field fluc-
tuations [24], in our case ΔB ¼ 47 μG from shot to shot,
which couple the symmetric level jgi with the antisym-
metric level jhi and lead to a dephasing after 5–10 ms
[Fig. 3(d)]. We thus employ a protocol that is largely
insensitive to magnetic field fluctuations [see Fig. 3(a) and
[36] ]. The phase measurement protocol starts after the
evolution along the trajectory by transferring the atoms in
level j1; 0i to j2; 0i. A subsequent radio-frequency π pulse
transfers all atoms from level jgi to j1; 0i, while leaving all

jhi atoms in j1;�1i. Measuring the atoms in j1;�1i
enables a postselection on experimental realizations with
negligible population in level jhi, which is an effective
postselection on vanishing magnetic-field fluctuations.
While the radio-frequency pulse also reduces the number
of atoms in j2; 0i, they can still be employed to determine
the interferometric phase by a microwave π=2 pulse on the
clock transition j1; 0i to j2; 0i.
Figures 3(c)–3(e) show the experimental result for

an initial state of n0 ¼ 0.5 and φ ¼ 0 at q ¼ 1.25 Ω
(P0 phase). The relative population n0 [Fig. 3(c)] shows a
clear oscillation as it is not affected by magnetic field noise.
In Fig. 3(d), the relative population after the interferometric
sequence, the phase signal, follows the ideal trajectory but
picks up substantial noise after 5–10 ms. A postselection on
a relative population of jhi versus jgi of less than 35%
reduces the fluctuations substantially and collapses the
measurements onto the prediction. However, a mirrored
signal appearswhenever themagnetic field deviation is large
enough for the jgi atoms to cycle once to jhi and back,which
is associated with a phase shift of π.

FIG. 2. Interferometric phase as an order parameter.
(a)–(c) Depending on the QZE q=Ω ¼ f1.25;−0.5;−1.5g, the
quantum states follow trajectories with different topologies that
can be associated with the P0 (blue), BA0 (orange), and TF0 (red)
quantum phases with a separatrix in between (black lines).
(d) Measurement of the relative population n0 (circles) as a
function of evolution time corresponding to the highlighted
trajectories in (a)–(c). The data are recorded by an iterative
measurement with reinitialization at each data point (4–6 ms), as
described in the Supplemental Material [36]. Statistical error bars
are smaller than the symbols. Solid lines and shading represent
the theoretical prediction with a systematical uncertainty in q=Ω.
The dashed lines mark a full population oscillation period T.
(e) A π=2 rotation on the Bloch sphere by an RF coupling pulse
allows for a measurement of the phase, which represents an order
parameter for ESQPTs (color bar).

FIG. 3. Measurement of an improved interferometric order
parameter. (a) Illustration of a sequence to measure the phase of
the atoms in jgiwith respect to j1; 0i, while using the atoms in jhi
for postselection to reduce magnetic-field sensitivity. (b) An
examined trajectory in the P0 phase. (c)–(e) Measurement of the
relative population n0 [projection onto vertical axis in (b)], the
relative population for phase readout n00 (horizontal axis), and
the order parameter j sinφj. Measurement results excluded by the
postselection are marked in gray. Light blue crosses indicate
mean values of the remaining measurement data (dark blue) for
j sinφj. Solid lines are obtained from the N → ∞ limit of Eq. (1),
dashed lines include an additional phase of π on jgi, the shaded
area indicates half a population oscillation T=2.
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A meaningful order parameter can be defined to be
j sinφj [Fig. 3(e)] as measured after a half-period of n0 [36].
The experimental data for variable evolution time agree
with the expectation. The mean value of 0.78(3) at a half-
period allows for a significant discrimination of the P0
phase versus the adjacent BA0 phase with an expected order
parameter of 0. The residual noise could be further reduced
by a stricter postselection parameter at the expense of
prolonged data acquisition. We note that for both the P0 and
the TF0 phases, the ideal value of the presented order
parameter is 1. These phases, which are not adjacent
anyhow, could nevertheless be distinguished by taking
the direction of the evolution into account. The proposed
order parameter together with a time-resolved measurement
allows for a discrimination of all three excited-state
quantum phases and thus for an experimental verification
of the complete excited-state quantum phase diagram in
Fig. 1(a).
We employ the developed order parameter to map out the

phase diagram along seven different paths that are shown as
colored lines in Fig. 4(a). The paths are conceptually
different, as they exploit the variation of three different
experimental parameters: the QZE q, the initial relative
population n0, and the initial relative phase φ. At fixed
QZE, the latter two correspond to a variation of the
excitation energy per particle

η ¼ hĤi
ΩN

− η0

¼ q
Ω
ð1 − n0Þ − 2n0ð1 − n0Þcos2φþ 1

2

�
q
2Ω

− 1

�
2

; ð2Þ

where the last term corresponds to the ground-state energy
per particle η0.
First, we vary the QZE q while maintaining an initial

state with n0 ¼ 0.5 and φ ¼ 0 [Fig. 4(b)]. The order
parameter shows the expected behavior; it exhibits large
values close to 1 in the TF0 and the P0 phase, and small
values close to 0 in the BA0 phase, with sharp ESQPTs in
between. The error bars quantify the stability of the results
with respect to a variation of the postselection parameter. It
is varied within a range of 0%–100% maximum relative
population of jhi and usually fixed to 35%. The ESQPTs
are broadened by technical fluctuations. Magnetic field
detuning changes the value of q, fluctuations of the total
atom number vary Ω and preparation imperfections result
in deviations of the excitation energies. The final result is
also displayed in the phase diagram Fig. 4(a), which also
includes corresponding measurements for different values
of n0.
Second, we vary the excitation energy η by preparing

initial states with different relative population n0, while

FIG. 4. Measurement of the order parameter as a function of various control parameters. (a) For the description of the phase diagram,
see Fig. 1. The recorded order parameter j sinφj (color scale) is recorded along the colored lines, enabling a clear determination of the
quantum phases. Small circles correspond to a variation of the QZE q, and small diamonds and squares result from a variation of the
excitation energy η, either by adjusting the population or the phase, respectively. The large hexagons represent an iterative measurement
of an equivalent phase-dependent order parameter (see Fig. 2). (b) Avariation of the QZE q leads to qualitatively different Bloch-sphere
trajectories. The order parameter (circles) after T=2 distinguishes between the quantum phases TF0, BA0, and P0. (c) Equivalent
measurement for a variation of the relative population n0. The gray circles on the Bloch sphere indicate different starting points for the
trajectories. (d) The order parameter as a function of the initial phase φ is evaluated at T=4 (see text). The Bloch sphere is displayed from
behind. In (b)–(d), vertical error bars indicate the sensitivity to the postselection. Horizontal error bars are obtained from measured
fluctuations of n0, φ, and q=Ω. The expected phase transitions are depicted by gray vertical lines. All colors reflect the order parameter,
as employed for (a).
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keeping the QZE q and initial phase φ constant [Fig. 4(c)].
The results for η < 0.05 are inconclusive, as a low relative
population n0 of a few percent makes the phase estimation
unreliable. This is also indicated by the instability with
respect to the postselection parameter. However, the
majority of data for η > 0.05 confirm the ESQPT.
Finally, we vary the excitation energy η by adjusting the

initial phase φ at the relative population n0 of the ground-
state stationary point [36], as shown in Fig. 4(d). The phase
measurement is now evaluated after a quarter-period of the
n0-evolution to approximate the presented order parameter
with good contrast. The data show a clear transition from
the BA0 to the P0 phase for increasing energy. The results
presented in Figs. 4(c) and 4(d) appear as vertical lines in
the phase diagram Fig. 4(a). Together, the evaluation of the
order parameter enables a precise determination of the
excited-state quantum phases and their transition lines,
which presents the main result of this Letter.
In conclusion, we have experimentally mapped out an

excited-state phase diagram, a task that up to now remained
elusive in any other physical platform, showing that spinor
Bose-Einstein condensates constitute a well controllable
system for the study of excited-state phases and phase
transitions. Employing an atomic spin-1 Bose-Einstein
condensate, excited quantum states were prepared with a
controlled well-defined energy. The phase diagram was
then mapped out by determining an interferometric order
parameter, introducing a robust protocol that is designed to
be largely insensitive to magnetic field fluctuations. Our
experiments probe a crucial feature of excited-state tran-
sitions: they can be crossed not only by quenching the
control parameter (in our case the quadratic Zeeman effect),
as ground-state transitions, but also by a controllable
precise change in the excitation energy, which acts as a
second control parameter. The probed abrupt change in the
qualitative nature of the excited states at a critical excitation
energy, experimentally extends the powerful concept of
quantum phases to the entire Hilbert space of the spinor
quantum gas.

We thank A. Smerzi, L. Pezzè, and M. Gessner for
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