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Photoinduced phase transitions in correlated materials promise diverse applications from ultrafast
switches to optoelectronics. Resolving those transitions and possible metastable phases temporally are key
enablers for these applications, but challenge existing experimental approaches. Extreme nonlinear optics
can help probe phase changes, as higher-order nonlinearities have higher sensitivity and temporal
resolution to band structure and lattice deformations. Here the ultrafast transition from the semiconducting
to the metallic phases in polycrystalline thin-film NbO2 is investigated by time-resolved harmonic
spectroscopy. The emission strength of all harmonic orders shows a steplike suppression when the
excitation fluence exceeds a threshold (∼11–12 mJ=cm2), below the fluence required for the thermal
transition—a signature of the nonthermal emergence of a metallic phase within 100� 20 fs. This
observation is backed by full ab initio simulations as well as a 1D chain model of high-harmonic generation
from both phases. Our results demonstrate femtosecond harmonic probing of phase transitions and
nonthermal dynamics in solids.
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Optical control of exotic or hidden phases in strongly
correlated systems has emerged as one of the core topics in
condensed matter physics [1,2]. Besides a fundamental
interest in disentangling competing electron-electron and
electron-lattice interactions, there is an equally attrac-
tive technological relevance for the realization of Mott
memristors [3–5]. Particularly, photoinduced insulator-to-
metal transition (IMT) in strongly correlated materials has
been studied widely for decades [3,4,6–9]. Various ultra-
fast spectroscopy tools such as linear reflection or absorp-
tion [7], photoelectron emission [8], and x-ray or electron
diffraction [9] were applied to reveal lattice distortions
and band structure transformations, and even indications
for metastable or hidden states were discovered in
photoinduced IMT [8,9]. The substantial achievements

made in this area are mostly based on linear or low-
order nonlinear spectroscopy, which probes a perturbative
response of the bound electronic states.
High-harmonic generation (HHG) is an extreme non-

linear optical effect and has been widely studied in gases
for decades and in more recent times also in solids [10,11].
HHG in solids originates from two main contributions: a
laser-driven intraband current and an interband polariza-
tion, which includes electron-hole recollisions [11,12].
While generalizations are difficult and still under debate,
it is mostly accepted that the former effect (intraband) is
dominant for below-band-gap harmonics, whereas the
latter (interband) mainly contributes to above-band-gap
harmonics [11]. Either way, the laser-driven sampling of
the band structure in solid HHG implies a high sensitivity
of HHG to subtle microscopic changes in electronic and
lattice structures [13–20]. Thus high-harmonic spectros-
copy has been used for all-optical detections of nano-
structures [21], band structure [15,16], dynamical Bloch
oscillations [22], and the superconducting phase [17].
Moreover, the exquisite time resolution of high-harmonic
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spectroscopy has been utilized to control electron motion
in dielectrics with attosecond accuracy [12,23]. These
characteristics highlight the remarkable capability of high-
harmonic spectroscopy that we apply here to decipher
photoinduced IMT processes with high sensitivity and
temporal resolution.
The availability and close-room-temperature IMT have

made VO2 (Tc ∼ 340 K) one of the best-studied strongly
correlated materials. However, the low Tc makes thermal
IMTs and effects from laser excitation difficult to separate
from the nonthermal transition [6,24], which challenges
all subsequent efforts to disentangle electron-electron
and electron-lattice mechanisms. Therefore, we chose
niobium dioxide (NbO2), a 4d1 isovalent compound of
VO2 to implement time-resolved HHG probing of phase
transitions. NbO2 exhibits an IMT between a body-centered
tetragonal (bct) semiconducting phase and a regular
rutile metallic one, but at a much higher temperature
of Tc ∼ 1080 K [25,26]. In this Letter, the photo-
induced nonthermal IMT in the thin film NbO2 is inves-
tigated by time-resolved high-harmonic spectroscopy
and identified via a characteristic steplike reduction of
HHG efficiency when the excitation surpasses a threshold
(∼11–12 mJ=cm2). The model analysis and theoretical
simulations both confirm the remarkable influence of
IMTon HHG efficiency reduction. The fluence dependence
and the transient change of this steplike reduction also
indicate the local growth and the ultrafast timescale features
of transient metallization in NbO2. These results highlight
the capability of high-harmonic spectroscopy, and also
provide new tools to investigate photoinduced IMTs.
Polycrystalline NbO2 (115 nm thick) was grown on a

c-plane sapphire substrate by reactive bias target ion beam
deposition [27–29]. HHG is produced by a 50-fs and
1.8-μm driving pulse [details in [29] in reflection mode
and collected by a fiber spectrometer (Fig. 1(a)]. In the
time-resolved measurements, pump pulses at 400 nm are
used for photocarrier excitation. The pump fluences are
varied between 1 to 25 mJ=cm2 via polarizers and kept
below the threshold of permanent degradation. Considering
the linear absorption of NbO2 at 400 nm, the injected
carrier density at these fluences is between 1 and
25 × 1020 cm−3.
Figure 1(a) shows an HHG spectrum of NbO2, where the

third, fifth and seventh harmonic orders (HOs) of 1.8 μm
can be clearly observed. Because of the polycrystalline
nature of NbO2, no even harmonic orders are observed. The
measured HHG wavelengths are well above the direct
(1.3 eV) and indirect band gap of the thin film NbO2

(0.7 eV). Separating the interband and intraband contribu-
tions in our simulations [29] suggests that interband
contributions are dominant. However, we cannot make a
definitive assignment of the mechanism due to the complex
band structure complexity of NbO2, which is also not the
main point of our work. The third and fifth harmonic orders

(HO3 and HO5) as a function of the driving intensity are
plotted in Fig. 1(b). The vacuum driving intensity of the
1.8-μm pulse is tuned from 0.05 to 3 TW=cm2, corre-
sponding to an electric field inside the sample of 0.33 to
2.7 V=nm. For lower intensities, HO3 follows I2.5, close to
the predicted power law of the perturbative theory. A slope
change for HO3 is found when increasing the intensity
beyond 0.25 TW=cm2, where signals are nearly propor-
tional to the driving intensity. Regarding HO5, the mea-
sured signal does not follow a power law expected from
perturbative behavior but scales with I1.9. While HO3 and
HO5 are technically not high orders of the nonlinear
response, their nonperturbative scaling with laser intensity
justifies the classification of the underlying process as
HHG. For our work, a high driving intensity (precisely
0.6 TW=cm2 for HO3 and 1 TW=cm2 for HO5) guarantees
that all harmonic orders result from a nonperturbative
nonlinear response.
To investigate HHG in different phases of NbO2, various

pump fluences are applied to excite photocarriers and
trigger a potential IMT. Figure 2(a) shows transient spectra
of HHG at three pump-probe delays for an excitation
fluence of 6 mJ=cm2 (extended data in Fig. S1 [29]). The
photocarrier injection leads to a rapid reduction of all
observed harmonic orders, similar to observations in
conventional semiconductors [42,43]. It should be noted
that the nearly full suppression of HHG signals can persist
for hundreds of picoseconds as shown in Fig. S2 [29].
Signal recovery occurs on much longer time scales (not
discussed in the present study) and may be affected by the
nanosecond photocarrier recombination in NbO2 [28,44].
Transient changes as a function of pump-probe delay for
the integrated harmonics orders HO3 and HO5 are plotted
for various excitation fluences in Fig. 2(b) and S3 in [29].
Their dynamic behaviors are similar, but HO5 is suppressed
more than HO3 following photocarrier injection, as shown
in Fig. S4 [29]. Transient HHG signals reach the maximum
suppression within 150 fs. Complete suppression of the
signal (corresponding to ΔIHHG ¼ −1) with increasing

(a) (b)

FIG. 1. (a) Static HHG spectrum from NbO2 thin film, driven
by 1.8-μm laser. The third, fifth, and seventh HOs can be clearly
observed. The inset displays the experimental reflection con-
figuration. (b) Signals of the third and fifth harmonic orders as a
function of the driving intensity. The dashed lines represent fitted
power laws.
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excitation fluence is possible, enabling to tune nonlinear
signals via optical or electronic excitation of carrier density.
Subsequently, the HHG signals rapidly recover with a fitted
lifetime of 0.3–0.4 ps, especially for low-fluence excita-
tions, possibly related to fast Auger-Meitner recombina-
tion. However, this rapid recovery starts to diminish when
the excitation becomes stronger, in contrast to the many-
body effect in conventional semiconductors. Moreover, full
quenching of HHG at the highest fluence can persist for
tens of picoseconds without any relaxation, which is only
observed in strongly correlated materials [29,45] This gives
a first indication of the potential contribution of other
mechanisms, such as an IMT, besides classical photocarrier
dynamics. Before substantiating that argument, we first
examine the dynamic behavior of transient HHG in the
semiconducting NbO2 (at low fluence).
For HHG in solids, photoexcited free carriers have been

found to reduce generation efficiency, and both ground-
state bleaching by photoexcitation as well as a reduction
of the dephasing time have been invoked as possible
reasons [42,43,46–48]. To link the HHG suppression to
photocarrier density, transient changes of HO3 and HO5
are shown as a function of the excitation fluences in
Figs. 2(c)–2(d) for three pump-probe delays. For delays
right after time zero (e.g., 110 fs), we observe a signal
suppression in HO3 and HO5 with a rapidly increasing
slope for low fluences which saturates and shows complete
suppression at high fluences. Similar behaviors are
observed in the lower driving intensity (perturbative
regime) (Fig. S5 [29]), and at longer driving wavelengths

(Fig. S6 [29]). We fit the HHG signal suppression right
after time zero [110 fs in Figs. 2(c)–2(d)] or at low fluence
with a phenomenological saturation model based on the
semiconducting response, as detailed in [29]. Importantly,
we note that the observed suppression saturation (fit for
HO3 and HO5) should be a general feature of photoexcited
HHG in semiconductors and dielectrics, and has already
been observed for many other materials [42,43,46,47].
For later time delays (> 200 fs) in Figs. 2(c)–2(d), the

suppression of HO3 and HO5 at high fluence shows a
remarkably different behavior rather than the usual satu-
ration features observed at early delays and previously in
the literature. The lower-fluence data again fit well by the
saturation model, indicating a typical semiconductor-
like response to HHG and its photocarrier-induced sup-
pression. However, for fluences above a threshold Fth of
11–12 mJ=cm2, the HHG suppression shows a stepwise
increase (marked by cyan arrows in Fig. 2), which is also
observed at the same fluence in independent measurements
for HO5 [Fig. 2(d)] and HO3 at a longer driving wave-
length (Fig. S6 [29]). This steplike suppression increase
and significant deviation from the characteristics of the
saturation model is a hallmark sign of an insulator-to-metal
phase transition: Once the fluence reaches a threshold for
sufficient photocarrier excitation, the supplied carriers
modify the potential surface and weaken bonding to trigger
metallization, and the emerging metallic phase causes a
sudden steplike change in HHG signal. Previous studies
on NbO2 indicated a photoinduced metallization near the
same fluence Fth by THz and coherent phonon spectro-
scopic [28,49]. HHG spectra have been reported in several
strongly correlated materials theoretically [14,45,50–52]
and experimentally, including time-resolved measurements
of VO2 [45], but such steplike suppression has not been
reported before and considered as robust evidence for phase
transition.
To reinforce the above interpretation of photoinduced

IMT revealed by HHG, simulations of the HHG process
have been performed for both the semiconducting and
metallic phases of NbO2, by means of a combined approach
of ab initio methods and solving the semiconductor
Bloch equations [29,40]. As shown in Fig. 3(a), the band
structures of these two phases (metallic rutile, and semi-
conducting bct) are calculated by density functional theory
(DFT) and projected ontoWannier orbitals to solve electron
dynamics numerically. Figure 3(b) shows the calculated
HHG spectra from the two distinct phases of NbO2, based
on the experimental parameters used above. Stronger HHG
signals can be observed in the bct phase than in the rutile
one, consistent with experimental observation, where the
metallic phase has a lower nonlinear efficiency. As shown
in the inset of Fig. 3(b), HO3 in the rutile phase is less than
half of that in the bct phase. Such efficiency difference is
enhanced in HO5, supporting the conclusion from Fig. 2,
that higher-order nonlinearities are more sensitive to

(c) (d)

(a) (b)

FIG. 2. Time-resolved HHG in NbO2 thin film. (a) Transient
HHG spectra for selected pump-probe delays at excitation
fluence of 6 mJ=cm2. (b) Transient change of HO3 under a
series of excitation intensities, where 0 and -1 represent the intact
value and full suppression of HHG. (c)–(d) Transient changes of
HO3 and HO5 as a function of excitation fluence at several delay
times. The dashed lines are fits based on the saturation model.
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metallization. Interestingly one can also find a larger
fundamental harmonic signal (i.e., N ¼ 1) in the rutile,
compared with the bct, which could be attributed to the
high reflection efficiency of the metallic phase and inter-
preted as evidence of the IMT. The transient reflection
change of our sample in Fig. S8 [29] reproduced this
phenomenon and also verifies the validity of our simu-
lations. Thus, HHG simulations in NbO2 under different
phases demonstrate that metallic formation can indeed
abruptly and significantly reduce HHG efficiency. To
highlight the remarkable influence of metallization on
HHG efficiency, we further performed another numerical
simulation using a modified version of the Peierls model
(see [29] for more details). The effect of the band gap on the
HHG spectra is explored and the corresponding results are
shown in Figs. 3(c)–3(d). The HHG spectrum and effi-
ciency are extremely sensitive to band gap variations. In the
upper panel of Fig. 3(d), the gap shrinkage results in a
gradual efficiency reduction of HO5. This effect may play a
limited role in transient HHG changes, but cannot explain
the anomalous steplike deviation from the saturation model
in Figs. 2(c)–2(d). The complete collapse of the band gap,
leading to a sudden and considerable drop in HHG
efficiency in the upper panel of Fig. 3(d), can provide us

with a reasonable answer: once the excitation fluence
exceeds Fth, the system enters a transient metallic phase
and thus HHG signals are nearly completely deactivated, as
shown in Fig. 3(d). Therefore, metallization (i.e., band gap
collapse) beyond Fth, accounts for the obvious deviation
from the saturation model in Figs. 2(c)–2(d), corroborating
our interpretation of the observation of photoinduced phase
transition.
Figures 2 and 3 establish the presence and sensitivity of

HHG to an IMT. Moreover, we have shown that the
saturation model captures transient HHG from the semi-
conducting phase below Fth, and transient metallization
leads to a steplike deviation at higher fluence. Thus, to
isolate the transient emergence of the metallic phase from
the general transient semiconducting response following
photoexcitation, we subtract the fitted saturation model
from transient data in Fig. 2 for all time delays. The isolated
HHG responses are interpreted as the emergence of the
metallic phase and the corresponding phase fraction can be
calculated and plotted in Fig. 4(a) as a function of the
excitation fluence for various time delays (details in [29]).
After time zero, the metallic phase fraction starts increasing
with the excitation fluence (> Fth) but stays similar for a
long delay time. The fluence-dependent phase fraction is
indicative of a spatially inhomogeneous transition, and
such an explanation is also supported by the observation
that the significant deviation in Figs. 2(c)–2(d) above Fth is
rather gradual than abrupt. In fact, similar nanoscale
nucleation has also been found in other phase-transition
materials via modern nano-imaging techniques and
assigned to crystal imperfections [6,53]. Besides spatial
information on the IMT, the isolated IMT response in the
time domain also allows tracking its emergence timescale.
The inset of Fig. 4(b) displays the transient responses of the
metallic phase for selected fluences, which shows that the
IMT responses are absent for low fluence and only exist
when the excitation fluence exceeds the threshold Fth—key
signatures of phase transitions. Following photoexcitation
at high fluence, the transient response from IMT emerges
rapidly and the HHG suppression lasts long. Its emergence
rate corresponds to the timescale of the IMT, and the
extracted full width at half maximum (FWHM) of these
rates are plotted in Fig. 4(b) and the fitting process can be
found in [29]. The timescale of IMT seems constant (from
110 to 90 fs) within error bars (20 fs), below the
instrumental resolution (∼70 fs) in our experiment. The
direct fitting of transient HO3 changes in Fig. S10 [29] also
leads to the same conclusion: the rising edge becomes
sharper when transient metallization occurs and eventually
shows the shortest FWHM of 105 fs.
Such a short timescale of IMT benefits discovering the

driving forces of the IMT. According to the thermal
capacity of NbO2 [54], the upper limit of the lattice
temperature induced by laser heating is estimated to be
< 500 K at Fth, much lower than the phase transition

(a) (b)

(c) (d)

FIG. 3. Theoretical simulations of HHG spectra in NbO2.
(a) DFT band structure for both the metallic rutile and semi-
conducting bct phases. Black lines depict the full DFT calcu-
lation while red ones show the band structure after a
Wannierization procedure. (b) HHG spectra in the rutile and
bct phase, using the full ab initio model for the NbO2. The insets
depict a zoom around HO3 and HO5, respectively. (c) HHG
spectra of the Peierls model in terms of the gap size. (d) Two
snapshots of (c). The upper panel, corresponding to the vertical
white line in (c), depicts the intensity of the fifth harmonic as a
function of the gap size. The lower panel, extracted from the
horizontal black line in (c), shows the HHG spectra comparison
between the metallic and insulating phases (with a gap of 0.7 eV
which is roughly the gap in NbO2).
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temperature (Tc ∼ 1080 K). (The estimation details seen
in [29].) This not only confirms the nonthermal nature of
transient metallization in NbO2, but also means that the
lattice transformation has no obvious contribution to the
steplike variation of the emitted harmonics, and transient
metallization with the bct lattice, as intermediate states,
may be an ultrafast and nonthermal phase transition [7–9].
It should be highlighted that transient metallization without
complete lattice transformation does not justify an inter-
pretation of a pure breakdown of electron-electron corre-
lation (Mott interaction) following excitation. Ultrafast and
local lattice distortion has also been found near Fth via
coherent phonon spectroscopy [28], and the timescale we
measured in the present study is close to a half period of the
phonon mode, mainly for dissociating the Nb-Nb dimer—
the characteristic lattice change in the temperature-induced
IMT. This motivates revisiting the current experiments with
even shorter pulses in order to distinguish structurally
driven (Nb-Nb dimer dissociation) from electronically
driven (Mott) transitions by their different timescales.
Our experiment represents the first unambiguous evi-

dence of photoinduced IMT in strongly correlated materials
via transient high-harmonic spectroscopy, which is appar-
ent as a large deviation of transient HHG from the typical
semiconductor response following photoexcitation. This
method can be regarded as a robust strategy and general
evidence for measuring photoinduced IMTs in strongly
correlated materials using HHG. Our experimental findings
are fully supported by HHG calculations from both the
ab initio theory in NbO2 and a Peierls model. Moreover,
our analysis supports a local nucleation process and
ultrafast metallization process emerging with nanotexture
for fluences just above the threshold. The timescale of the
phase transition of 100 fs which we extract from our data
indicates a nonthermal transition, which motivates experi-
ments with even higher time resolution and ideally spatial

resolution to address the emergent nanotexture that was
indirectly inferred from our data. Finally, we note that the
near-complete signal suppression observed at high fluences
in NbO2 makes it an ideal candidate for all-optical switches
and control, a key aspiration for ultrafast IMTs and strongly
correlated materials.
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