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A major challenge for density functional theory (DFT) is its failure to treat static correlation, yielding
errors in predicted charges, band gaps, van der Waals forces, and reaction barriers. Here we combine one-
and two-electron reduced density matrix (1- and 2-RDM) theories with DFT to obtain a universal OðN3Þ
generalization of DFT for static correlation. Using the lowest unitary invariant of the cumulant 2-RDM,
we generate a 1-RDM functional theory that corrects the convexity of any DFT functional to capture static
correlation in its fractional orbital occupations. Importantly, the unitary invariant yields a predictive theory
by revealing the dependence of the correction’s strength upon the trace of the two-electron repulsion
matrix. We apply the theory to the barrier to rotation in ethylene, the relative energies of the benzynes,
as well as an 11-molecule, dissociation benchmark. By inheriting the computational efficiency of DFT
without sacrificing the treatment of static correlation, the theory opens new possibilities for the prediction
and interpretation of significant quantum molecular effects and phenomena.
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Introduction.—The success of density functional theory
(DFT) [1–3] lies in its ability to improve upon the energies
and properties of mean-field theories like Hartree-Fock
while retaining the computational scaling of a one-electron
theory. Nonetheless, the exact energy functional of DFT,
originally postulated by Hohenberg and Kohn [4], is not
known in a practical form, which leads to limitations in the
prediction of charges [5,6], van der Waals forces [7], barrier
heights [8], and bi- and multiradicals [9]. These limitations
largely arise from the inability of DFT to provide a
complete description of static (or multireference) electron
correlation, which occurs when two or more Slater deter-
minants contribute equally or nearly equally to the wave
function. Recently, it has been shown that modern density
functionals typically improve the energy over more estab-
lished functionals at the expense of other properties
including electron density [10,11], implying that such
improvements may be arising in part from an overfitting
of the energy rather than a fundamental enhancement of the
underlying functional.
In this Letter, we combine DFT [1–3] and its extensions

[12–22] with 1-RDM [23–40] and 2-RDM [41–68] theories
to obtain a universalOðN3Þ generalization of DFT for static
correlation. We consider the invariants of the cumulant part
of the 2-RDM [45–48] with respect to one-body unitary
transformations [69,70]. Using the lowest order invariant,
we derive a universal transformation of DFT into a 1-RDM
functional theory (1-RDMFT) whose convexity naturally
allows the orbital occupations to become fractional upon
correlation. Critically, the correction, derived from the
cumulant invariant, has an explicit dependence on the trace
of the electron-repulsion matrix that correctly determines

the magnitude of the correction, removing a significant
limitation of previous work [21,38], to realize a predictive
theory. The quadratic dependence of the functional on the
1-RDM produces a quadratic semidefinite program that
we solve using an efficient boundary-point algorithm for
semidefinite programming [63] developed for variational
2-RDM theory [41,42,57–68]. To demonstrate, we apply
the functional theory to examining the barrier to rotation in
ethylene [71], the relative energies of the benzynes [72], as
well as a benchmark based on the dissociation energies of
11 molecules [73]. The cumulant-based generalization of
DFT has the potential to extend the reach of DFT to treat a
broader range of molecules and materials including those
whose properties are significantly influenced by static
correlation.
Theory.—Consider the energy of any many-electron

atom or molecule in a finite basis of r spin orbitals as a
functional of the 1- and 2-RDMs [28]

E2RDM½1D; 2D� ¼ Trð1H 1DÞ þ Trð2V 2DÞ; ð1Þ

in which 1H is the matrix representation of the one-electron
kinetic energy and nuclear-electron Coulomb terms, 2V is
the matrix representation of the two-electron repulsion
term, and 1D and 2D are the 1- and 2-RDMs, normalized
to N and NðN − 1Þ=2, respectively. We can reexpress the
2-RDM in terms of its cumulant expansion [45–48]

2D ¼ 1D ∧ 1Dþ 2Δ ð2Þ

where ∧ denotes the antisymmetric (or Grassmann) tensor
product [45] and 2Δ is the cumulant (or connected) part of
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the 2-RDM. Hence, the energy can also be written as a
functional of the 1-RDM and the cumulant 2-RDM

E2RDM½1D; 2Δ� ¼ E½1D� þ EΔ½2Δ�; ð3Þ

in which

E½1D� ¼ Trð1H 1DÞ þ Trð2V 1D ∧ 1DÞ ð4Þ

EΔ½2Δ� ¼ Trð2V 2ΔÞ: ð5Þ

Because the cumulant 2-RDM can be decomposed into
three orthogonal subspaces based on the unitary group [69],
known as the unitary decomposition [70], we have

2Δ ¼ 2Δ0 þ 2Δ1 þ 2Δ2 ð6Þ

or

EΔ½2Δ� ¼ EΔ
0 ½2Δ0� þ EΔ

1 ½2Δ1� þ EΔ
2 ½2Δ2�; ð7Þ

where

EΔ
k ½2Δk� ¼ Trð2V 2ΔkÞ: ð8Þ

Because the zeroth component of the unitary decomposi-
tion of the cumulant 2-RDM is [69]

2Δ0 ¼
2

rðr − 1ÞTrð
2ΔÞ2I; ð9Þ

in which 2I is the two-electron identity matrix, we can
express the zeroth component of the cumulant correction to
the energy as follows

EΔ
0 ½2Δ0� ¼

2

rðr − 1ÞTrð
2VÞTrð2ΔÞ: ð10Þ

However, the trace of the cumulant 2-RDM can be
expressed in terms of the 1-RDM’s idempotency [74–77]

Trð2ΔÞ ¼ −
1

2
Trð1D − 1D2Þ; ð11Þ

in which 1D2 denotes the square of the 1-RDM, and the
trace of 2V can be expressed in terms of the two-electron
repulsion integrals in physics notation

Trð2VÞ ¼ 2
X

ĩ;j̃

ð2hĩ j̃ jjĩ j̃i − hĩ j̃ jjj̃ ĩiÞ; ð12Þ

where the tilde denotes the index of the spatial part of the
spin orbital. Therefore, using Eqs. (11) and (12) in Eq. (10),
we can express the zeroth component of the cumulant
energy correction as a functional of the 1-RDM

EΔ
0 ½2Δ0� ¼ −γTrð1D − 1D2Þ; ð13Þ

where

γ ¼ 2

rðr − 1Þ
X

ĩ;j̃

ð2hĩ j̃ jjĩ j̃i − hĩ j̃ jjj̃ ĩiÞ: ð14Þ

Approximating the cumulant energy with its zeroth-order
component yields a 1-RDM functional theory that corrects
the Hartree-Fock energy.
The correction mainly accounts for static correlation.

To see this, we consider the contribution of energetically
low-lying excitations to the electron correlation, known as
dynamic correlation. The largest contribution arises from
the double excitations in which two electrons in occupied
orbitals are promoted to two unoccupied orbitals. These
excitations appear in off-diagonal terms of the cumulant
2-RDM in which both upper indices correspond to unoc-
cupied orbitals and both lower indices correspond to
occupied orbitals [55]. These elements, however, only
contribute to the final energy term from the unitary
decomposition. Consequently, the zeroth energy term,
arising from the trace of the cumulant 2-RDM, primarily
accounts for static correlation. We can alternately establish
the relationship between this correction and static correla-
tion from directly evaluating the trace of the cumulant
2-RDM. The cumulant’s trace equals the trace of the
idempotency relation for the 1-RDM [74–77]. The 1-RDM
only deviates significantly from idempotency when its
occupation numbers are highly fractional—far from zero
and one, which occurs primarily when an atom or molecule
possesses significant static correlation.
Previous work showed that we can transform DFT into a

1-RDMFT by adding a correction functional [21,38]

ERDMFT½1D� ¼ EDFTþT½1D� þ C½1D� ð15Þ

in which

EDFTþT½1D� ¼ EDFT½ρ� þ ðT½1D� − Ts½ρ�Þ; ð16Þ

EDFT½ρ� ¼ Ts½ρ� þ V½ρ� þ Fxc½ρ�; ð17Þ

where ρ is the one-electron density, Ts½ρ� is the non-
interacting kinetic energy functional, T½1D� is the interact-
ing kinetic energy functional, V½ρ� is the sum of the external
and Hartree potentials, Fxc½ρ� is the exchange-correlation
functional, and C½1D� is the correction functional. An
approximate form for C½1D� we derived to be [38]

C½1D� ¼ −wTrð1D − 1D2Þ ð18Þ

in which w was an unknown parameter whose value, we
showed, depends on the molecular system. Comparing
Eq. (18) with Eqs. (13) and (14), however, we find that
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w ¼ γ or that w depends on a subset of the electron
repulsion integrals. We introduce a damping factor
κ∈ ½0; 1� such that w ¼ κγ to account for the fact that
the density functional already includes some of the static
correlation. Importantly, κ, we observe, is largely indepen-
dent of the molecular system because the system-dependent
behavior is captured by the trace of the two-body interaction
matrix, and hence, for a given approximate density func-
tional a single value for the damping parameter can be used
across molecules. While the damping parameter does vary
with the choice of the density functional, its optimal
magnitude increases linearly with the amount of Hartree-
Fock exchange. Consequently, we find that a greater
correction for electron correlation is required for DFT
functionals with a greater degree of Hartree-Fock exchange.
Using the correction with DFT rather than Hartree-Fock
theory has the important advantage that DFT already has a
good approximation to the dynamic correlation.
The cumulant-based correction can also be viewed as a

correction to the convexity of the energy functional [78].
The Hartree-Fock energy is a concave functional of the
1-RDM [79,80]. This concave property causes the solutions
of Hartree-Fock theory to occur at extreme points along the
boundary of the convex set of 1-RDMs that correspond
to Slater determinant wave functions [80]. The correct
1-RDM energy functional is convex, which causes its
solutions, when correlated, to lie inside the convex set
of 1-RDMs [81]. Incorporation of the cumulant-based
energy correction, which is a convex functional of the
1-RDM, increases the convexity of both the Hartree-Fock
and DFT-based energy functionals. This enhancement of
convexity generates a movement, described by Schilling
and Schilling as a force [33], arising from correlation
that drives the 1-RDM into the convex set and away from
its boundary.
Results.—We apply the 1-RDMFT to treat the barrier to

rotation in ethylene [71], the relative energies of the three
geometric isomers of benzyne [72], as well as a benchmark
based on the atomization energies of 11 molecules [73]. We
use the formulaw ¼ κγ with γ in Eq. (14) and κ ¼ 0.158 for
correcting both SCAN-DFT [82] and PBE-DFT [83],
which we denote as SCAN-RDMFT and PBE-RDMFT,
respectively (see Table S1 in the Supplemental Material
[84]). Previous work showed empirically that the ratio of
the optimal weight for correcting the Hartree-Fock method
to the optimal weight for correcting the SCAN-DFT
functional is a constant [21], which determines the value
of κ. The fact that κ is significantly less than unity indicates
that the SCAN and PBE functionals already account for a
significant percentage of 2Δ0; nonetheless, as shown below,
the missing part is critical to both generating the fractional
occupations and correcting the energy errors. Because the
degree to which a functional accounts for this term should
be independent of the molecule, we can understand why a
single value of κ for a given functional is likely to be

accurate across a wide range of molecules. All calculations
use the correlation-consistent polarized valence double-
zeta (cc-pVDZ) basis set [85]. We solve the 1-RDMFT
by an OðN3Þ self-consistent-field method, detailed in
Refs. [21,38], that solves a semidefinite program by the
boundary-point algorithm developed in Ref. [63] for
variational 2-RDM theory [57–68]. In general, the
1-RDMFT can be readily implemented on top of existing
self-consistent-field implementations of DFT. While DFT
can, in principle, employ only the occupied molecular
orbitals, the 1-RDMFT can also exploit just the non-
negligible fractionally occupied orbitals, which will be a
small fraction of the total number of orbitals. Calculations
with the complete-active-space self-consistent-field
method (CASSCF) [86] and the anti-Hermitian contracted
Schrödinger equation (ACSE) [49,51] are performed
with the Quantum Chemistry Package in Maple [87],
and calculations with coupled cluster with single, double,
and perturbative triple excitations [CCSD(T)] [88]
and multiconfiguration pair density functional theory
(MC-PDFT) [14] are performed with PySCF [89].
First, we calculate the potential energy surface for the

C-C bond rotation in C2H4, which corresponds to a
transition from a double bond well captured by a single
reference approach at a 0° dihedral angle to a strongly
correlated biradical at a 90° dihedral angle. The results,
plotted in Fig. 1, reveal a general overestimation of the
barrier height in single-reference methods, with errors of
26.21, 31.50, and 6.70 kcal=mol for PBE-DFT, SCAN-
DFT, CCSD(T), respectively, as compared to a CASSCF
(12,12)/ACSE reference [here we use the ðN; r=2Þ

FIG. 1. C2H4 rotational barrier potential energy surfaces
obtained from CASSCF(12,12)/ACSE, CCSD(T), PBE-RDMFT,
SCAN-RDMFT, PBE-DFT, SCAN-DFT, and CASSCF(12,12)/
tPBE calculations with the cc-pVDZ basis set.
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convention where N is the number of electrons and r=2
is the number of spatial orbitals in the active space].
1-RDMFT yields significant improvements with errors of
−6.51, and 0.33 kcal=mol for PBE-RDMFT and SCAN-
RDMFT, respectively. These results compare favorably to
tPBE MC-PDFT, which yields an error of 5.72 kcal=mol.
(The “t” in the acronym tPBE denotes the translation of
the conventional PBE exchange-correlation functional in
DFT to an on-top functional for use in MC-PDFT [14].)
The DFT and 1-RDMFT potential energy surfaces reveal
identical relative energies along the HCCH dihedral angle
until the 1-RDMFTs yield fractionally occupied orbitals,
starting at the 54° and 57° dihedral angles, for PBE and
SCAN, respectively, owing to increasingly strong static
correlation. A plot of the orbital occupations along the
dihedral angle is available in Fig. S1 of the Supplemental
Material [84]. Both PBE-RDMFT and SCAN-RDMFT
are able to remove correctly the energetic discontinuity
observed in DFT at the 90° dihedral angle caused by the
degeneracy of the highest occupied molecular orbital
(HOMO) and lowest unoccupied molecular orbital
(LUMO), resulting in a smooth potential energy surface.
CCSD(T) and tPBE MC-PDFT, however, increasingly
deviate from the reference CASSCF(12,12)/ACSE curve
with a maximal error at the 90° dihedral angle, where they
both fail to fully resolve the multireference character,
resulting in the overestimation of the barrier height com-
pared to the ACSE and the 1-RDMFTs.
Next, we apply PBE-RDMFT and SCAN-RDMFT to a

subset of the multireference main group non-metal bond
energy molecular test set (MR-MGN-BE17) [73], previ-
ously developed as a set of systems for testing the accuracy
of density functionals on bond dissociations. Equilibrium
geometries and reference dissociation energies are obtained
by scanning over the molecules’ limited degrees of freedom
using the ACSE seeded with a valence CASSCF calcu-
lation. The results, displayed in Table I, yield mean
unsigned errors (MUEs) of 29.50 and 36.91 kcal=mol
for PBE-RDMFT and SCAN-RDMFT, respectively, com-
pared to the reference CASSCF/ACSE energies. Here,
CASSCF calculations utilize active spaces encompassing
all valence electrons and orbitals. These results present
significant improvements over traditional PBE-DFT and
SCAN-DFT’s MUEs of 114.46 and 127.85 kcal=mol with
an approximate fourfold reduction in error. This is the result
of 1-RDMFT fractionally occupying the valence orbitals as
the molecules dissociate which corrects DFT’s overesti-
mation of the dissociated limit. The 1-RDMFT MUEs
also compare favorably to the explicitly correlated tPBE
MC-PDFT calculations’ MUE of 22.15 kcal=mol. Finally,
consideration of the mean signed error (MSE) for PBE-
RDMFT of 7.06 kcal=mol, reveals a nearly equal over
and underestimation of the dissociation energies, while
SCAN-RDMFT’s MSE of 25.65 kcal=mol shows a
stronger tendency to overestimate the dissociation energies.

As PBE-DFT, SCAN-DFT, and tPBE never underesti-
mate the dissociation energy, their MSEs match their MUEs
with values of 114.46, 127.85, and 22.15 kcal=mol,
respectively.
Finally, in Fig. 2 we investigate the relative energy

differences between the three geometric isomers of benzyne
with ground-state geometries obtained from Ref. [72], which

FIG. 2. Relative energies of meta- and para-benzyne with
respect to ortho-benzyne from RDMFT and DFTwith the SCAN
and PBE functionals, MC-PDFT using the tPBE functional, and
CCSD(T).

TABLE I. Dissociation errors in kcal=mol for a subset of the
MR-MGN-BE17 test set compared to the CASSCF(valence)/
ACSE energies. Dissociation data taken at 5 Å internuclear
distances.

Dissociation errors

DFT RDMFT
MC-PDFT

PBE SCAN PBE SCAN tPBE

B2 → 2B 19.53 23.01 −2.12 −0.87 10.73
C2 → 2C 101.47 85.63 12.12 23.38 7.80
CN → Cþ N 125.34 139.02 29.47 48.28 17.69
CO2 → Cþ 2O 172.11 205.46 8.17 46.22 35.37
F2 → 2F 73.84 84.91 −19.13 −17.53 22.51
NF3 → Nþ 3F 184.18 205.46 71.10 96.94 68.28
NO → Nþ O 142.28 156.00 36.58 57.72 22.81
S2 → 2S 58.21 153.34 −40.02 −27.79 17.41
SiO → Siþ O 67.55 251.27 −36.07 −15.28 8.77
CO → Cþ O 94.62 359.51 −26.09 −0.47 12.27
N2 → 2N 219.93 213.67 43.61 71.57 20.08

MSE 114.46 127.85 7.06 25.65 22.15
MUE 114.46 127.85 29.50 36.91 22.15
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become increasingly strongly correlated with increasing
distance between the radical centers (ortho-benzyne <
meta-benzyne < para-benzyne) [90]. As both meta- and
ortho-benzyne have weak static correlation effects, the
1-RDMFTs are expected to remain idempotent, recovering
traditional DFT’s energies. This is, indeed, observed, with
SCAN-RDMFT and SCAN-DFT both producing energy
differences of 9.34 kcal=mol between the two isomers
while PBE-RDMFT and PBE-DFT yield 8.4 kcal=mol.
These results are both within 1.1 kcal=mol of CASSCF
(4,4)/tPBE’s predicted energy difference of 9.5 kcal=mol.
CCSD(T) deviates more significantly from the previous
results, yielding the largest energy difference at
14.03 kcal=mol, which is in good agreement with the
experimentally predicted energy gap of 15.6 kcal=mol.
Calculation of the more strongly correlated para-isomer
yields deviations between 1-RDMFT and DFT, resulting
in decreases in the para-ortho energy differences obtained
from SCAN-DFT and PBE-DFT of 35.89 and
33.73 kcal=mol, respectively, to 30.62 and 27.4 kcal=mol
from SCAN-RDMFT and PBE-RDMFT. These 1-RDMFT
values are within the experimental error range and give
significantly better agreement with CCSD(T) and tPBE’s
energy differences of 27.42 and 28.80 kcal=mol, respec-
tively, compared to DFT.
Conclusions.—We present a universal 1-RDMFT func-

tional for the treatment of strongly correlated systems,
based on a transformation of traditional DFT. While
the development of density-, 1-RDM-, and 2-RDM-based
theories often occur separately, here we combine aspects of
DFTand 2-RDM theory to develop a 1-RDMFT that retains
DFT’s OðN3Þ efficiency while realizing the ability to
capture static correlation. Importantly, by using the unitary
invariants of the cumulant 2-RDM, we derive a general
formula for the magnitude of the correction—the w
parameter—in terms of the diagonal part of two-electron
interaction matrix, which overcomes a limitation of earlier
work, arising from the need to define a system specific w
value [21,38]. The derived formula for w can also be used
to systematize related approaches, such as information
density-matrix functional theory (iDMFT) [37] and ther-
mally assisted-occupation DFT (TAO-DFT) [13,22], which
rely on unknown fictitious temperatures in Fermi-Dirac
distributions. We can potentially improve the functional
further by approximating the remaining terms of the unitary
decomposition, which we will investigate in future work.
We demonstrate the applicability of 1-RDMFT by inves-
tigating a set of small molecular dissociations in the
MR-MGN-BE17 test set, as well as the rotational barrier
height of ethylene and the relative energy differences of the
benzyne isomers. Because of the 1-RDM correction in the
energy functional, 1-RDMFT yields significant improve-
ments over DFT in the presence of strong correlation while
recovering the DFT energy in the single-reference limit.
The 1-RDMFT opens new possibilities for the treatment of

static correlation in the accurate prediction of molecular
structures and processes.

D. A. M. gratefully acknowledges the U.S. National
Science Foundation Grant No. CHE-2155082.
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