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Quantum Monte Carlo simulations are powerful and versatile tools for the quantum many-body
problem. In addition to the usual calculations of energies and eigenstate observables, quantumMonte Carlo
simulations can in principle be used to build fast and accurate many-body emulators using eigenvector
continuation or design time-dependent Hamiltonians for adiabatic quantum computing. These new
applications require something that is missing from the published literature, an efficient quantum
Monte Carlo scheme for computing the inner product of ground state eigenvectors corresponding to
different Hamiltonians. In this work, we introduce an algorithm called the floating block method, which
solves the problem by performing Euclidean time evolution with two different Hamiltonians and
interleaving the corresponding time blocks. We use the floating block method and nuclear lattice
simulations to build eigenvector continuation emulators for energies of 4He, 8Be, 12C, and 16O nuclei over a
range of local and nonlocal interaction couplings. From the emulator data, we identify the quantum phase
transition line from a Bose gas of alpha particles to a nuclear liquid.
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Introduction.—Quantum Monte Carlo simulations are
widely used for first-principles calculations of solid state
systems and condensed matter [1–6], quantum chemistry
[7–9], atomic and molecular physics [9–11], lattice field
theories [12–14], nuclear physics [15–18], degenerate
quantum gases [19–21], and other quantum many-body
systems. In cases where sign oscillations are under control,
the computational effort scales favorably as a low-order
polynomial in the number of particles. There are many
examples of quantum many-body systems with strong
correlations where quantum Monte Carlo simulations are
the only tools currently available for reliable and accurate
predictions. The standard quantities calculated in quantum
Monte Carlo simulations are low-lying energy levels and
their corresponding eigenstate observables. Since wave
functions are not constructed explicitly, the set of linear
algebra operations that can be performed on energy
eigenstates is often more limited than that for other methods
that explicitly construct and store wave functions.
One basic linear algebra operation that would be

extremely useful is the calculation of inner products
between energy eigenstates corresponding with different
quantum Hamiltonians. Calculating eigenstate inner prod-
ucts within the framework of quantum Monte Carlo sim-
ulations would allow for the construction of fast and
accurate emulators using eigenvector continuation [22]

for systems that might otherwise be inaccessible using
other methods. Another potential application is the ability
to use quantum Monte Carlo simulations to design time-
dependent Hamiltonians HðtÞ for efficient adiabatic quan-
tum computing [23,24]. The initial Hamiltonian Hð0Þ is
any trivial Hamiltonian whose ground state can be prepared
on a quantum computer, and the final Hamiltonian HðTÞ is
the quantum Hamiltonian of interest. Starting from the
ground state of Hð0Þ and slowly evolving with HðtÞ, one
can accurately prepare the ground state of HðTÞ when T is
sufficiently large. Quantum Monte Carlo simulations on
classical computers can be used to optimally select Hð0Þ
and the time-dependent path HðtÞ such that the inner
products between ground states at times t and tþ dt
remain as large as possible for each t, thereby reducing
the need for very slow time evolution. These calculations
require calculations of inner products between the ground
states corresponding to HðtÞ and Hðtþ dtÞ. This informa-
tion can also be used to compute Berry connections,
curvatures, and phases associated with cyclical adiabatic
evolution [25]. After preparing the ground state of the
desired Hamiltonian HðTÞ, the quantum computer could
then be used to perform real-time dynamics that would
otherwise be beyond classical computing capabilities.
In this work, we introduce a quantum Monte Carlo

algorithm called the floating block method that computes
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the inner product between two eigenstates produced by two
different Hamiltonians. This is achieved by performing
Euclidean time evolution for the two Hamiltonians and
interleaving the corresponding time blocks. We demon-
strate the floating block method using nuclear lattice
simulations and eigenvector continuation to build emula-
tors for the energies of 4He, 8Be, 12C, and 16O nuclei over a
range of local and nonlocal interaction couplings.
Floating block method.—Let Hi and Hj be two different

quantum Hamiltonians with ground state wave functions
jv0i i and jv0ji, respectively, and ground state energies E0

i

and E0
j , respectively. The only requirement is that Hi and

Hj can be simulated using quantum Monte Carlo simu-
lations. The floating block method is based on the identity,

lim
t→∞

hψ Ije−Hite−Hjte−Hite−Hjtjψ Ii
hψ Ije−2Hite−2Hjtjψ Ii

¼ jhv0i jv0jij2; ð1Þ

where jψ Ii is any initial state that is not orthogonal to both
jv0i i and jv0ji. We note that the ground state energy values
E0
i and E

0
j drop out of Eq. (1) in the limit of large t. This is a

key feature and computational advantage of the floating
block method. For cases where the phase of the inner
product is nontrivial, we calculate the phase using

lim
t→∞

hψ Ije−2Hite−2Hjtjψ Ii
jhψ Ije−2Hite−2Hjtjψ Iij

¼ hv0i jv0ji
jhv0i jv0jij

: ð2Þ

We are using the phase convention that hψ Ijv0i i and hψ Ijv0ji
are positive. The floating block method can be used for
quantum Monte Carlo simulations on the lattice or in
continuous space and is compatible with path integral
Monte Carlo simulations where particle worldlines are
explicitly sampled or auxiliary-field Monte Carlo simula-
tions where the particles are integrated out.
One can also compute hv0i jv0ji using the reweighting

techniques used in Refs. [22,26]. This approach is pre-
sented in Supplemental Material [27]. Unfortunately, the
reweighting approach is viable only when the system is
small in size, the Euclidean time t is not too large, and the
ground state energies for the different Hamiltonians are
numerically close. We show in Supplemental Material [27]
that the floating block method provides a computational
advantage over reweighting calculations equal to several
orders of magnitude.
Applications to eigenvector continuation.—Eigenvector

continuation (EC) is a variational technique for finding the
extremal eigenvectors and eigenvalues of a parameter-
dependent Hamiltonian matrixHðcÞ [22]. The method relies
on the analyticity of the eigenvectors as a function of
parameters of the Hamiltonian. The resulting smooth para-
metric dependence allows the eigenvector manifold to be
well approximated by a low-dimensional subspace. By
reducing the dimensionality of the problem, calculations

are orders of magnitude faster, and this aspect has been used
to build fast and accurate emulators using EC [28,29]. Its
convergence properties were investigated in [30], and a
greedy algorithm to optimally select training points was
presented in Ref. [31]. In Refs. [32,33], EC was identified as
a specific example of a wider class of techniques called
reduced basis methods [34–36]. Meanwhile, there have been
numerous theoretical developments and applications of
eigenvector continuation and other reduced basis methods
in nuclear physics [26,33,37–42].
Let us consider a Hamiltonian of the form HðcÞ ¼

H0 þ cH1. In order to perform EC calculation of the
ground state, we first choose some set training points
c ¼ c0;…; cN and find the exact ground state eigenvectors
jv00i;…; jv0Ni. If our target system corresponds to parameter
value c ¼ ct, we calculate the projected Hamiltonian
matrix Hij ¼ hv0i jHðctÞjv0ji, norm matrix Nij ¼ hv0i jv0ji,
and solve the corresponding generalized eigenvalue prob-
lem. We use the floating block method to compute the norm
matrix Nij. In order to determine the projected Hamiltonian
matrix elements, we use the result

lim
t→∞

hψ Ije−2HitHðctÞe−2Hjtjψ Ii
hψ Ije−2Hite−2Hjtjψ Ii

¼ Hij

Nij
: ð3Þ

Methods.—Reviews of auxiliary-field lattice Monte Carlo
simulations are given in Refs. [15,18]. We start with an initial
state and propagate it over a large but finite number of
time steps, which we denote by Lt. In each of these time
steps, we multiply the current state by the transfer matrix
M ¼ exp½−HðcÞΔt�. For notational simplicity, we omit the
normal ordering symbols ∶∶ that should enclose each
transfer matrix. From the data we obtain from different Lt,
we can extrapolate to infinite time.
Consider a family of Hamiltonians of the form

HðcÞ ¼ H0 þ cH1. For the lattice simulations presented
here, we consider two independent parameters, but the
formalism is the same. We are interested in performing
calculations at some target value point c ¼ ct, using the
training data at c ¼ fc1;…; ckg. For a finite number of
time steps Lt, we write Eq. (3) as

Hij

Nij
¼ hψ Ije−HðciÞΔtj � � � jHðctÞj � � � je−HðcjÞΔtjψ Ii

hψ Ije−HðciÞΔtj � � � je−HðcjÞΔtjψ Ii
: ð4Þ

For notational convenience, the limit Lt → ∞ on the right-
hand side is implicit. We further simplify the notation as

Hij

Nij
¼ hψ Ijcij � � � jcijHðctÞjcjj � � � jcjjψ Ii

hψ Ijcij � � � jcijcjj � � � jcjjψ Ii
; ð5Þ

where jcij represents a time step where we multiply by
transfer matrix e−HðciÞΔt, and there are Lt=2 time steps of
jcij and jcjj each. Note again that since there are an equal
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number of such time steps in the numerator and denom-
inator, the ground state energy factors cancel out in the limit
Lt → ∞. The squared magnitude of the norm matrix Nij is
given by

jNijj2 ¼
hψ Ijcij � � � jcijcjj � � � jcjjcij � � � jcijcjj � � � jcjjψ Ii
hψ Ijcij � � � jcijcij � � � jcijcjj � � � jcjjcjj � � � jcjjψ Ii

:

ð6Þ

Again, the limit Lt → ∞ is implicit. We prove these results
in Supplemental Material [27].
For our quantum Monte Carlo simulations, we select

configurations according to the absolute value of the
expression in the denominator of Eq. (6) and evaluate
the expressions in the numerator and the denominator.

However, the stochastic noise will be large if the expres-
sions in the numerator and denominator are very different.
We first discuss how to optimize the performance of the
floating block method for auxiliary-field Monte Carlo
simulations, and then we discuss how to optimize the
process for path integral Monte Carlo simulations without
auxiliary fields.
We can reduce the stochastic error in auxiliary-field

Monte Carlo simulations with two techniques. The first is
to reorder the auxiliary fields in the numerator. Usually, the
same auxiliary field configurations are used for calculating
the numerator and the denominator in Eq. (6). Here, we
instead reorder the auxiliary fields in the numerator so that
the sequence of auxiliary fields for coupling ci is the same
for the numerator and denominator. Similarly, the sequence
of auxiliary fields for coupling cj is the same for the
numerator and denominator. After performing this reorder-
ing, the only difference between the numerator and
denominator comes from the commutator of the transfer
matrices with different Hamiltonian couplings. We illus-
trate in Fig. 1 an example calculation of jNijj2 with 12 time
steps. The time steps in the numerator and denominator
connected by double-arrow lines have the same auxiliary
field configurations. This reordering greatly reduces the
noise of the Monte Carlo simulations. Without the reorder-
ing, it is impossible to compute norm matrices from any
calculation with more than a few time steps. We discuss the
computational advantage of reordering the auxiliary fields
in Supplemental Material [27] and show that it provides a
computational advantage of many orders of magnitude.
When the displacement of time blocks is large, the

numerator and denominator are quite different calculations,
and the stochastic noise can become quite large. This is
fixed by the second of our two techniques. We allow the
time blocks to “float” gradually, similar to a block of ice
detaching from a large ice mass and floating into the sea. In
the following example, we float three time blocks one step
at a time. This is illustrated in the bottom three lines of
Fig. 6. Each term, N1, N2, N3, is computed separately and

FIG. 1. The norm matrix calculation of jNijj2 with 12 time
steps.

TABLE I. Comparison of the EC emulator prediction and full simulations results for 12C. The training points
added to the EC subspace progressively are ðcL; cNLÞ ¼ ð0.5; 0.5Þ, (0.2,0.8), (0,1), and (0.2,0.6).

ðcL; cNLÞ Full simulation 2nd order EC 3rd order EC 4th order EC

(0.8,0.2) −338.57� 0.03 −330.63� 0.26 −333.15� 1.85 −333.24� 1.14
(0.8,0.1) −295.33� 0.02 −290.04� 0.24 −292.08� 1.51 −292.17� 1.03
(0.9,0.1) −381.81� 0.02 −369.12� 0.28 −372.63� 2.24 −372.77� 1.83
(0.8,0.3) −382.41� 0.03 −371.22� 0.27 −374.24� 2.25 −374.34� 1.42
(0.4,0.6) −177.15� 0.05 −177.25� 0.19 −177.32� 0.46 −177.33� 0.24
(0.4,0.7) −217.73� 0.04 −217.70� 0.19 −217.71� 0.38 −217.72� 0.21
(0.3,0.7) −141.11� 0.05 −139.63� 0.19 −141.09� 0.71 −141.10� 0.35
(0.4,0.8) −259.35� 0.06 −258.19� 0.20 −258.31� 0.30 −258.32� 0.28
(0.2,0.6) −41.54� 0.05 −31.91� 0.15 −37.75� 0.50 −41.64� 0.14
(0.2,0.2) 31.26� 0.02 101.48� 0.17 99.18� 1.86 69.72� 1.77
(0.8,0.8) −606.63� 0.05 −574.23� 0.37 −579.97� 4.02 −580.12� 2.70
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multiplied together to give N1N2N3 ¼ jNijj2. This gradual
floating of time blocks is also useful for path integral
Monte Carlo simulations without auxiliary fields. For path
integral Monte Carlo simulations, we work with particle
worldlines defined by particle positions as functions of
Euclidean time. We again use gradual floating of the time
blocks to produce correlated samples with reduced sto-
chastic noise. For each ratio of amplitudes we calculate,
the worldlines are chosen to be the same for the numerator
and denominator.
Results.—We perform nuclear lattice simulations using a

simple leading order interaction that is independent of
spin and isospin. Despite the simplicity of the interaction,
previous lattice studies have shown that they produce a
good description of the bulk properties of nuclear structure
and thermodynamics [43–46]. We use a spatial lattice
spacing of 1.97 fm and a time lattice spacing of
0.197 fm=c. The interactions are composed of two types
of interactions, which we write as VLðr0; rÞ and VNLðr0; rÞ.
Here r and r0 are the relative separation of the incoming and
outgoing nucleons, respectively. For VNL the interaction is
nonlocal, which means that r and r0 are in general different.
Meanwhile, VL is a local interaction where r0 and r are the
same. These local and nonlocal interactions are smeared
in space with parameters sL and sNL, respectively, and the
normalizations of VL and VNL are chosen so that the
physical 4He binding energy is reproduced for interactions
HA ¼ K þ VL and HB ¼ K þ VNL, where K is the kinetic
energy operator. We describe the interactions in detail in
Supplemental Material [27].
We consider general linear combinations of the local and

nonlocal interactions, HðcL; cNLÞ ¼ Kþ cLVL þ cNLVNL,
and compute the binding energies of 4He, 8Be, 12C, and 16O.
In Table I, we show EC predictions for the ground state
energy of 12C using the floating block method in compari-
son with full simulation results, for Lt ¼ 400. For the EC
emulator, we use the training points ðcL; cNLÞ ¼ ð0.5; 0.5Þ,
(0.2,0.8), (0,1), and (0.2,0.6), with the corresponding
ground state vectors included in that order. The reported
errors for the full simulation are one standard deviation
stochastic errors. The errors for EC calculations are also
one standard deviation errors determined from propagating
stochastic errors using the trimmed sampling method
described in Ref. [47]. We see that the EC emulator very
accurately reproduces the full simulation results for test
points ðcL; cNLÞ within the interpolation region of the
training points. For test points outside of the interpolation
region, the quality of the predictions is less accurate but still
quite good for most cases.
We note that the EC emulator is a variational approxi-

mation. The error bars shown at each EC order in Table I
correspond to the uncertainty in the variational approxi-
mation predictions. As more orders in the EC approxima-
tion are used, the EC results should converge to the full
simulation results from above.

In Fig. 2, we plot the ground state energy of 8Be relative
to the two-alpha threshold in (a), ground state energy of 12C
relative to the three-alpha threshold in (b), and ground state
energy of 16O relative to the four-alpha threshold in (c). For
each case, we perform second-order EC with training
points at ðcL; cNLÞ ¼ ð0.5; 0.5Þ and (0,1) in a periodic
box of length L ¼ 15.76 fm. The dashed lines show the
experimentally observed values. The location of the quan-
tum phase transition in the ðcL; cNLÞ plane can be seen

FIG. 2. Contour plots for the difference between the EC
emulated energy and the corresponding multialpha threshold
energies for 8Be in panel (a), 12C in panel (b), and 16O in panel (c).
The dashed lines show the experimental values.
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clearly from the zero contours in Fig. 2 where the ground
state energy equals the corresponding multialpha threshold.
We note that the quantum phase transition occurs at
approximately the same locations for 8Be, 12C, and 16O,
corresponding with the line where the alpha-alpha inter-
action changes from repulsive to attractive. Consistent with
the findings in Ref. [48], we see that the local interaction
coupling cL plays a dominant role in determining whether
we have a Bose gas or a nuclear liquid. We cannot produce
a nuclear liquid using cNL alone.
Summary and discussion.—We have introduced the

floating block method, a new computational algorithm
for quantum Monte Carlo simulations that allows for the
calculation of inner products between ground-state wave
functions corresponding to different Hamiltonians. Such
calculations were not practical using previously existing
methods, and while they were possible for small systems,
even for those systems the floating block method provides a
computational advantage of several orders of magnitude
that scales with the complexity of the calculation.
This ability to compute inner products between ground-

state wave functions corresponding to different Hamiltonians
opens the door to efficient construction of EC emulators
using quantum Monte Carlo simulations. In this work, we
have used this method to explore the ðcL; cNLÞ phase
diagram corresponding to local and nonlocal interactions.
We find that the EC emulators are very accurate for
interpolation and also fairly reliable for extrapolation. We
are able to locate the quantum phase transition line between a
Bose gas of alpha particles and a nuclear liquid.
While the examples we have considered here are lattice

calculations using auxiliary fields, the application of the
floating block method for continuum calculations with path
integral Monte Carlo is straightforward. We hope that this
theoretical development will enable the construction of new
emulators using quantum Monte Carlo methods as well as
possible novel applications for quantum computing.
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Phys. Rev. C 101, 041302(R) (2020).

[38] R. J. Furnstahl, A. J. Garcia, P. J. Millican, and X. Zhang,
Phys. Lett. B 809, 135719 (2020).

[39] D. Bai and Z. Ren, Phys. Rev. C 103, 014612 (2021).
[40] S. Wesolowski, I. Svensson, A. Ekström, C. Forssén, R. J.

Furnstahl, J. A. Melendez, and D. R. Phillips, Phys. Rev. C
104, 064001 (2021).

[41] S. Yoshida and N. Shimizu, Prog. Theor. Exp. Phys. 2022,
053D02 (2022).

[42] J. A. Melendez, C. Drischler, A. J. Garcia, R. J. Furnstahl,
and X. Zhang, Phys. Lett. B 821, 136608 (2021).

[43] B.-N. Lu, N. Li, S. Elhatisari, D. Lee, E. Epelbaum, and
U.-G. Meißner, Phys. Lett. B 797, 134863 (2019).

[44] B.-N. Lu, N. Li, S. Elhatisari, D. Lee, J. E. Drut, T. A.
Lähde, E. Epelbaum, and U.-G. Meißner, Phys. Rev. Lett.
125, 192502 (2020).

[45] S. Shen, S. Elhatisari, T. A. Lähde, D. Lee, B.-N. Lu, and
U.-G. Meißner, Nat. Commun. 14, 2777 (2023).

[46] Z. Ren, S. Elhatisari, T. A. Lähde, D. Lee, and U.-G.
Meißner, arXiv:2305.15037.

[47] C. Hicks and D. Lee, Phys. Rev. Res. 5, L022001
(2023).

[48] S. Elhatisari, N. Li, A. Rokash, J. M. Alarcón, D. Du, N.
Klein, B. N. Lu, U.-G. Meißner, E. Epelbaum, H. Krebs
et al., Phys. Rev. Lett. 117, 132501 (2016).

[49] https://www.gauss-centre.eu/.

PHYSICAL REVIEW LETTERS 131, 242503 (2023)

242503-6

https://doi.org/10.1126/science.1057726
https://doi.org/10.1098/rspa.1984.0023
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.242503
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.242503
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.242503
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.242503
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.242503
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.242503
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.242503
https://doi.org/10.1016/j.physletb.2020.135814
https://doi.org/10.1103/PhysRevLett.123.252501
https://doi.org/10.1103/PhysRevLett.123.252501
https://doi.org/10.1103/PhysRevLett.126.032501
https://doi.org/10.1103/PhysRevResearch.4.023214
https://doi.org/10.1103/PhysRevC.106.054322
https://doi.org/10.1103/PhysRevC.106.054322
https://doi.org/10.1088/1361-6471/ac83dd
https://doi.org/10.1186/2190-5983-1-3
https://doi.org/10.1186/2190-5983-1-3
https://doi.org/10.1103/PhysRevLett.106.221102
https://doi.org/10.1103/PhysRevC.101.041302
https://doi.org/10.1016/j.physletb.2020.135719
https://doi.org/10.1103/PhysRevC.103.014612
https://doi.org/10.1103/PhysRevC.104.064001
https://doi.org/10.1103/PhysRevC.104.064001
https://doi.org/10.1093/ptep/ptac059
https://doi.org/10.1093/ptep/ptac059
https://doi.org/10.1016/j.physletb.2021.136608
https://doi.org/10.1016/j.physletb.2019.134863
https://doi.org/10.1103/PhysRevLett.125.192502
https://doi.org/10.1103/PhysRevLett.125.192502
https://doi.org/10.1038/s41467-023-38391-y
https://arXiv.org/abs/2305.15037
https://doi.org/10.1103/PhysRevResearch.5.L022001
https://doi.org/10.1103/PhysRevResearch.5.L022001
https://doi.org/10.1103/PhysRevLett.117.132501
https://www.gauss-centre.eu/
https://www.gauss-centre.eu/
https://www.gauss-centre.eu/

