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We propose novel thermodynamic inequalities that apply to stationary asymptotically anti–de Sitter
(AdS) black holes. These inequalities incorporate the thermodynamic volume and refine the reverse
isoperimetric inequality. To assess the validity of our conjectures, we apply them to a wide range of
analytical black hole solutions, observing compelling evidence in their favor. Intriguingly, our findings
indicate that these inequalities may also apply for black holes of nonspherical horizon topology, as we show
their validity as well for thin asymptotically AdS black rings.
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Introduction.—The thermal nature of black holes under-
pins many of the deepest insights into quantum gravity.
Black hole entropy ensures the consistency of the second
law of thermodynamics in our Universe and is a “smoking
gun” for a microscopic description of the gravitational field
[1,2]. Over the last decade, our understanding of the laws of
black hole mechanics has expanded to include pressure and
volume [3,4]. The study of these terms is often called
extended black hole thermodynamics and has led to new
perspectives on gravitational phase transitions [5], black
hole heat engines [6], and holography [7–11].
Extended black hole thermodynamics centers on thermo-

dynamic volume, which has a geometric definition in terms
of Komar integrals and is important for rendering consistent
the Smarr formula for anti–de Sitter (AdS) black holes [3].
If one allows for variations in the cosmological constant,
then the thermodynamic volume appears in the first law as
its conjugate quantity.
A particularly interesting early result in extended

thermodynamics is the reverse isoperimetric inequality
(RII) [4]. The RII conjectures that for a black hole in D
dimensions with horizon area A and thermodynamic
volume V, the ratio

R≡
�
V
V0

�
1=ðD−1Þ�A0

A

�
1=ðD−2Þ

ð1Þ

satisfies R ≥ 1 [12]. Physically, the RII is the idea that, for
a black hole with a fixed thermodynamic volume, there is a
maximum possible entropy. The maximum entropy is
achieved for the Schwarzschild-AdS black hole, which
saturates the inequality. This allows for the following
alternate interpretation of the RII: The entropy of a black
hole of thermodynamic volume V is no more than the

entropy of the Schwarzschild-AdS black hole with the same
volume, or

AðVÞ ≤ ASchwðVÞ: ð2Þ
Support for the RII is robust. For instance, in [4] the RII

was found to hold for a wide variety of asymptotically AdS
black holes in four and higher dimensions. Further cor-
roboration was given in [13], where it was found to hold for
the topologically nontrivial higher-dimensional AdS black
rings. In [14], it was found that the conjecture applies to
black hole and cosmological horizons in asymptotically de
Sitter spacetimes, while [15] showed the RII is amenable to
the inclusion of conical deficits. Intriguingly, the results of
[10] point toward a “quantum” RII when semiclassical
effects are accounted for. Despite this progress, no general
mathematical proof of the inequality or a precise statement
of its necessary or sufficient conditions has been estab-
lished, except for a few specific cases. For example, in [16],
researchers proved the RII for static black holes with planar
horizons, assuming an empirically motivated formula for
the thermodynamic volume and the null energy condition.
In addition to intrinsic interest as a well-supported

geometric and thermodynamic inequality, the RII has led
to several intriguing results. For instance, in [17], a negative
heat capacity at constant volume was linked with a
violation of the RII, implying thermodynamic instability.
The authors of [18] investigated the thermodynamic vol-
ume from a microscopic perspective and suggested that a
violation of the RII in three spacetime dimensions is related
to overcounting of the field theory entropy in the Cardy
formula. Additionally, in [8], the authors established a
connection between thermodynamic volume and the com-
plexity of formation in holography. They argued that the
RII can be understood as a lower bound on the complexity
of formation set by the entropy.
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There are no known counterexamples to the RII for
asymptotically AdS black hole solutions of Einstein gravity
in dimension D ≥ 4. Beyond this, there are only two cases
where violations of the RII have been argued for, but
neither case is completely compelling. The first example
pertains to a class of “ultraspinning” black holes that arise
from a singular limit of the Kerr-AdS metric [19–22]. The
ultraspinning black hole is asymptotically locally AdS and
possesses an event horizon that is noncompact yet has finite
area. In the original Refs. [20,21], it was argued that these
black holes highlight the role played by horizon topology in
the statement of the RII. However, whether they provide a
legitimate counterexample to the RII was subsequently
called into question [23,24]. Essentially, the ultraspinning
limit results in a metric of reduced cohomogeneity, which
makes the thermodynamics as considered ill-defined.
The second possible violation of the RII is associatedwith

electrically charged Bañados-Teitelboim-Zanelli (BTZ)
black holes and is closely connected with the challenges
of defining Komar charges in lower dimensions (see
also [25]), as well as the peculiarities of the charged BTZ
solution [26]. The RII is only violated when an alternative
(nongeometric) definition of the thermodynamic volume is
employed. If one adheres to the geometric definition of the
thermodynamic volume, then the RII is satisfied and no
violation occurs [26,27]. In summary, while the literature
features potential violations of the RII, to date, there is no
definitive counterexample to the conjecture.
Our purpose here is to present novel inequalities involv-

ing the thermodynamic volume that are generalizations of
the RII. Our refined reverse isoperimetric inequalities
(RRIIs) include angular momentum. They reduce to the
standard RII when the angular momentum vanishes, but are
otherwise strictly stronger statements. The strongest variant
of the RRII is the following.
Conjecture 1 (Strong RRII).—For a stationary asymp-

totically AdS black hole of mass M, angular momenta Ji,
and thermodynamic volume V, the following inequality
holds:

AðM; Ji; VÞ ≤ AKerrðM; Ji; VÞ; ð3Þ

where AKerr is the area of the Kerr-AdS black hole with the
same parameters.
Conjecture 1 is the statement that for fixed values of

ðM; Ji; VÞ, the Kerr-AdS black hole (if it exists) has
maximum entropy [28]. Any deformation of the solution,
e.g., through the incorporation of additional charges or
matter fields, leads to a decrease in the black hole entropy.
In the limit Ji → 0, the Kerr-AdS area reduces to the
Schwarzschild-AdS area and the RII (1) is recovered.
The conjecture takes inspiration from the Penrose

inequality and its stronger generalizations that incorporate
conserved charges [29]. Restricted to stationary spacetimes,
the Penrose inequality provides a bound on the mass in

terms of the area of the horizon, holding as an equality for
slices of the asymptotically flat Schwarzschild black hole
and as an inequality for other stationary, asymptotically flat
black holes. Analogously, there exists a stronger form of
the Penrose inequality that includes angular momentum.
This version holds as an equality for slices of the Kerr
solution and as an inequality for more general solutions
[30,31] (see also [32–37]).
The RII (1) holds as an equality for the Schwarzschild-

AdS black hole, while it is an inequality under more general
circumstances. In the same spirit as the stronger version of
the Penrose inequality, we sought to find a generalization of
the RII that holds as an equality for the Kerr-AdS black
holes, and then investigate whether this relation holds more
generally as an inequality. This led us to the RRII given
in (3). Below, we will provide evidence in favor of this
conjecture by examining a large number of examples. We
also present conjectures weaker than (3), but stronger
than (1).
Evidence for the strong RRII.—We will now present the

evidence we have accumulated in favor of the conjecture
(3). To streamline the discussion, the form of the metrics
and relevant thermodynamic parameters have been pre-
sented in the Supplemental Material [38].
Consider first the Kerr-Newman-AdS black hole, for

which the extended thermodynamics was first studied in
[39,40]. For this case, the following identity holds among
the thermodynamic parameters:

36πM2V2 −M2A3 − 64π3J4 ¼ 16π2Q2J2A: ð4Þ

In particular, note that when the charge Q ¼ 0, the metric
reduces to the Kerr-AdS4 solution and the left-hand side
vanishes identically. To check the validity of the RRII, we
hold fixed M, J, and V and study how A changes as the
charge Q is varied. To satisfy the RRII conjecture requires
that the right-hand side is non-negative. This is manifestly
so, and therefore the conjecture (3) holds for the Kerr-
Newman-AdS black hole.
For our next example, we examine the charged, rota-

ting AdS C-metric. We validate the inequality using the
Christodoulou-Ruffini mass formula from [15], specifically
referencing (17) from that study, which yields

4πM2

S
≤
�
3πMV
2S2

−
2C2

x2

�
2

− 4

�
πJ
S

�
4

; ð5Þ

while the combination of (11) and (13) of [15] gives

3πMV
2S2

−
2C2

x2
> 0: ð6Þ

Combining these relations and replacing S ¼ A=4, we
obtain
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36πM2V2 −M2A3 − 64π3J4 ≥ 0: ð7Þ

Therefore, the RRII holds for this solution.
We next consider the rotating pairwise-equal charge

black holes in D ¼ 4 gauged supergravity. These, charac-
terized by two Uð1Þ charges, were first detailed in [41] and
later analyzed thermodynamically in [4,42]. Using
Mathematica, it is possible to directly prove that (3) holds.
For illustrative purposes, we present a few representative
examples in Fig. 1.
We now turn to higher dimensions. In these cases, it is

not possible to proceed analytically, and we resort to
numerical exploration of the parameter space. To test the
RRII in five dimensions, we examine a charged and
rotating solution of minimal gauged supergravity presented
in [54]. This solution is defined by five parameters
—ðrþ; a; b; g; qÞ—that represent the horizon radius, spin
parameters, cosmological length scale, and charge, respec-
tively. Our testing approach involves generating random
values for these parameters and verifying that they corre-
spond to a physically reasonable black hole by ensuring a
nonsingular exterior metric. Next, we compute the con-
served charges associated with these parameter values, then
we determine whether one (or more) Kerr-AdS5 black hole
exists with the same volume and conserved charges, and
compute the associated parameters ðr̃þ; ã; b̃; g̃Þ. Finally,
we compare the areas to confirm the validity of the
conjecture (3).
For the solution of [54], we have carried out this

procedure for approximately 100 000 randomly sampled
parameter values, and in no case have we found a violation
of the RRII (3). For all parameter values we have explored,
if there exists a corresponding Kerr-AdS5 black hole with
the same volume and conserved charges, it has a larger area
than the corresponding supergravity solution. Our results
provide strong numerical support for the validity of (3).
In D ¼ 7 gauged supergravity, there are exact rotating

black hole solutions with three independent angular
momenta and equal Uð1Þ charges [43]. We study their
extended thermodynamics for the first time in the
Supplemental Material [38]. While studying the RRII for

this black hole, computational constraints limited our
verification to a few hundred random parameter sets.
Despite this, no counterexamples emerged, even in solu-
tions with pathologies like closed timelike curves.
We can make further analytical progress by noting a

useful corollary of the strong RRII (3) that follows when
the black hole of interest reduces to the Kerr-AdS black
hole as some parameter w → 0 [55]. If we further assume
that the area is an analytic function of the parameter w, we
can expand (3) in the vicinity of the Kerr solution. The RRII
implies in this limit that the first nonvanishing signed
derivative of A with respect to the parameter w must be
negative,

lim
w→0

signðwÞn⋆
�
∂
n⋆A
∂wn⋆

�
M;Ji;V

≤ 0; ð8Þ

where n⋆ denotes the order of the first nonvanishing
derivative. This inequality implies the RRII in some small
neighborhood of the Kerr solution where higher-order
terms in a Taylor expansion can be neglected. As such,
this is a necessary condition for the validity of conjecture
(3), but it is not a sufficient condition. One advantage of (8)
is that it can be applied directly to a particular black hole of
interest and does not require a direct comparison with the
Kerr solution.
For all black holes studied, we have proven that (8)

holds. In every instance, the first derivative vanishes and the
second is strictly negative. This reveals the Kerr-AdS black
hole as a local entropy maximum, and confirms the RRII
near the Kerr-AdS solution.
Bounds on the isoperimetric ratio.—It would be of

interest to write (3) as an explicit correction to the bound
satisfied by the isoperimetric ratioR. By making reference
to the physical parameters of only a single black hole, such
an inequality would apply in cases where a Kerr-AdS black
hole may not exist for the specified values of ðM; Ji; VÞ.
The first step toward constructing such an inequality

would be to find a relationship among the physical
parameters of the Kerr-AdS black hole of interest. Since
the conjecture (3) involves only A, M, Ji, and V, the
necessary relationship would be a function of these
parameters fðA;M; Ji; VÞ such that fðA;M; Ji; VÞ ¼ 0.
In high dimensions, obtaining such a relationship would
generically require solving a polynomial of degree greater
than 4. This prevents us from presenting in the general case
RRII that explicitly involves the isoperimetric ratio R.
However, below we will present weaker versions of (3) that
are similar to (1).
One exception is the four-dimensional case. There, it is

straightforward to obtain a function of the relevant para-
meters that vanishes for Kerr-AdS black hole,

fðM;A; V; JÞ≡ 36πM2V2 −M2A3 − 64π3J4; ð9Þ

FIG. 1. For the pairwise-equal charge black holes of D ¼ 4

gauged supergravity, we plot f≡ 36πM2V2 −M2A3 − 64π3J4

against several charge values, keeping m ¼ 1 and l ¼ 5 constant.
The RRII is valid when f ≥ 0. The curve end point for
ðQ1; Q2Þ ¼ ð0.5; 0.1Þ represents an extremal black hole.
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which we have implicitly made use of earlier in (4). In
terms of this function, the inequality (3) becomes the
statement fðA;M; V; JÞ ≥ 0. Some algebra allows this
inequality to be expressed directly in terms of the isoperi-
metric ratio. The simplest way to do so yields

R ≥
�
1 −

�
4πJ2

3MV

�
2
�−1=6

: ð10Þ

The inequality is saturated for the Kerr-AdS black hole, and
obviously reduces to (1) when J → 0. In four dimensions,
(10) is completely equivalent to (3).
In higher dimensions, it is not in general possible

to do the same, because obtaining the identity AKerr ¼
AKerrðM; Ji; VÞ requires solving a polynomial of high
degree. For these cases, we present reverse isoperimetric
inequalities of intermediate strength, that is, strictly
stronger than (1) but weaker than (3). The advantage of
these intermediate inequalities is that they involve only
quantities defined for one solution. Therefore, the inter-
mediate inequalities have a potentially larger domain of
applicability compared to the RRII.
Because of differences in rotating black holes across

even and odd dimensions, the intermediate inequalities also
vary. We have the following in even and odd dimensions.
Conjecture 2-1 (Intermediate RRII: even D).—For a

black hole of mass M, angular momenta Ji, area A,
and thermodynamic volume V, the following inequality
holds:

RD−1 ≥
�
1 −

�
2πðD − 2ÞJ2min

ðD − 1ÞMV

�
2
�−1=2

; ð11Þ

where Jmin ≡minfjJijg and R is defined in (1). If it
happens that there is only a single nonzero angular
momentum, call it J, then we can further say

RD−1 ≥
�
1 −

�
8π

ðD − 2ÞðD − 1Þ
J2

MV

�
2
�−1=2

: ð12Þ

Conjecture 2-2 (Intermediate RRII: odd D).—For a
black hole of mass M, angular momenta Ji, area A, and
thermodynamic volume V, the following inequality holds:

RD−1 ≥
�
1 −

2πJ2min

MV

�−ðD−3Þ=½2ðD−2Þ�

×

�
1þ 2πðD − 3Þ

ðD − 1Þ
J2min

MV

�−ðD−1Þ=½2ðD−2Þ�
; ð13Þ

where Jmin ≡minfjJijg and R is defined in (1). If it
happens that there is only a single nonzero angular
momentum, then we can further say

RD−1 ≥
�
1−

4π

ðD−1ÞðD− 2Þ
J2

MV

�−ðD−3Þ=½2ðD−2Þ�

×

�
1þ 4πðD− 3Þ

ðD− 2ÞðD− 1Þ2
J2

MV

�−ðD−1Þ=½2ðD−2Þ�
: ð14Þ

Conjecture 2-1 is saturated for the equal-spinning
Kerr-AdS black holes in even dimensions, while
Conjecture 2-2 is saturated for the odd-dimensional
Schwarzschild-AdS black holes. That they hold as inequal-
ities for the general Kerr-AdS solutions is proven in the
Supplemental Material [38].
Numerically checking Conjectures 2-1 and 2-2 is more

efficient than verifying the stronger (3). For the five-
dimensional charged and rotating solution of minimal
gauged supergravity, Conjecture 2-2 has been confirmed
for approximately 107 parameter sets. Similarly, in the
seven-dimensional case with equal charges, we have con-
firmed it for approximately 105 sets, providing strong
evidence toward the validity of the conjecture.
Intriguingly, Conjectures 2-1 and 2-2 appear to hold

beyond black holes with spherical horizon topology. We
have checked these conjectures against the thin AdS black
ring in all dimensions D ≥ 5 [44]. The thin black ring has
horizon topology S1 × SD−3 with the S1 characterized by
the radius R and the SD−3 characterized by the radius r0.
The ring is thin in the sense that r0 ≪ min fR;lg, where l
is the AdS curvature radius. In particular, this means that
the ratio r0=R ≪ 1 always. The thermodynamics of the thin
black ring was explored in [44] and its extended thermo-
dynamics in [13]. The latter showed the RII’s validity for
the ring, with the isoperimetric ratio (1) greatly exceeding 1
due to r0=R ≪ 1; cf. Sec. 6 of that work.
Here we can prove analytically that the Conjectures 2-1

and 2-2 hold for the thin black ring. The solution has a
single nonvanishing angular momentum, and so in each
case it is the second inequality that applies. The key detail is
the expression for the ratio

J2

MV
¼ ðD− 1Þ½1þðD− 2ÞR2�½D− 3þðD− 2ÞR2�

8πðD− 2Þð1þR2Þ2 ; ð15Þ

where we have introduced the notationR≡ R=l. This ratio
is monotonically increasing, ranging from J2=ðMVÞ ¼
ðD2 − 4Dþ 3Þ=½8πðD − 2Þ� for R ¼ 0 to J2=ðMVÞ ¼
ðD2 − 3Dþ 2Þ=ð8πÞ in the limit R → ∞. This ratio is
bounded and is order-one as a function of R=r0. This
fact ensures the intermediate RRII always holds (see
Supplemental Material [38]).
Conclusions.—The original reverse isoperimetric

inequality appears to be part of a hierarchy reminiscent
of the nesting of Penrose inequalities for rotating and
charged black holes. Within this hierarchy, the original RII
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is the least restrictive, and we have presented strong
evidence for a more stringent version applicable to rotating
black holes. This hints at an intricate link between
thermodynamic volume and black hole entropy, revitalizing
the initial conjecture and opening up fresh avenues of
inquiry.
Here we have focused on the case of asymptotically AdS

black holes in D ≥ 4 dimensions, but similar questions
could be explored in a variety of other contexts. For
example, we anticipate an extension of this result to hold
for de Sitter black holes and cosmological horizons, along
the lines of [14]. Furthermore, it is known that Misner
strings possess thermodynamic volume [56], and it may be
possible to formulate a version of the (R)RII that applies to
spacetimes with NUT charge. In all cases, it is natural to
expect further possible extensions of the RII that incorpo-
rate angular momentum, charge, or possibly both charge
and angular momentum. Our Letter has utilized examples
of black holes with additional conserved charges.
Analyzing the validity of the new conjecture for hairy
black holes, similar to [57], would be an important step.
Finally, understanding the holographic interpretation of
both the RII and RRII would be worth further study. Using
the framework of [9,11], it should be possible to address
this question in concrete terms.
Another question concerns uniqueness. While both the

Schwarzschild-AdS and Reissner-Nordström-AdS black
holes saturate the RII, in D ¼ 4 only the Kerr-AdS black
hole saturates the RRII. This hints that saturation may occur
only for Kerr-AdS black holes.
Ultimately, since the RRII is stronger than the origi-

nal RII, finding a counterexample might be simpler.
Such a counterexample would clarify the conditions for
the (R)RII’s validity and strengthen its mathematical
foundation.
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