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Shadow estimation is a recent protocol that allows estimating exponentially many expectation values of a
quantum state from “classical shadows,” obtained by applying random quantum circuits and computational
basis measurements. In this Letter we study the statistical efficiency of this approach in light of near-term
quantum computing. We propose a more practical variant of the protocol, thrifty shadow estimation, in
which quantum circuits are reused many times instead of having to be freshly generated for each
measurement. We show that reuse is maximally effective when sampling Haar random unitaries, and
maximally ineffective when sampling from the Clifford group, i.e., one should not reuse circuits when
performing shadow estimation with the Clifford group. We provide an efficiently simulable family of
quantum circuits that interpolates between these extremes, which we believe should be used instead of the
Clifford group. Finally, we consider tail bounds for shadow estimation and discuss when median-of-means
estimation can be replaced with standard mean estimation.
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A key aspect of the development of larger-scale quantum
computers is the availability of protocols that can diagnose
errors and noise in quantum computations. Over the years
many such protocols have been proposed, optimizing either
for informational completeness (various forms of tomog-
raphy) or sampling efficiency (e.g., randomized bench-
marking [1,2] or direct fidelity estimation [2]), but not
achieving both at the same time. See Ref. [3] for a general
overview. Recently Huang, Küng, and Preskill (HKP) went
beyond this apparent dichotomy by proposing shadow
estimation [4], a randomized protocol which extracts
exponentially many expectation values TrðOρÞ from poly-
nomially many copies of the state ρ, with the only caveat
being a restriction on the set of allowed observables O [5].
Shadow estimation has generated significant interest and
led to several theoretical follow-up works [7,8] and
experimental applications [9,10] (see also [11] for a
comprehensive overview). At its face value, the protocol
is extremely simple: upon receiving a state ρ one generates
a random n-qubit circuit U from a circuit set U, applies it to
the state ρ, and then measures in the computational basis,
obtaining a bit string x. The tuple ðU; xÞ then forms a so-
called classical shadow of the state ρ, from which expect-
ation values TrðOρÞ can be reconstructed by classical post-
processing [see Fig. 1(a) for details]. The performance of
the protocol depends on the circuit set U, as well as the
observables one considers. An important case is when the
circuit set is the multiqubit Clifford group Cn, which is a
3-design. In this case, shadow tomography is efficient for
observables O for which TrðO2Þ is bounded. The Clifford
group furthermore has the advantage that if the observable
is, e.g., a projection onto a stabilizer state, then the classical

postprocessing needed is also computationally efficient by
the Gottesman-Knill theorem [12], which is very useful in
practice.
A key component of the HKP proposal is that every

classical shadow requires an independent random circuit.
This is critical to the mathematical argument for its
statistical efficiency, but can be undesirable in practice.
Especially in near-term quantum computers, it is preferable
in many systems to measure a fixed circuit multiple times to
generate a large number of classical shadows. This can
already be seen in experimental implementations of shadow
estimation such as [10], which reports repeating each
circuit >104 times, and [9], which reports measuring each
circuit 103 times. This is likely inspired by experience with
randomized benchmarking, which similarly samples ran-
dom circuits (and where the statistics of repeating circuits is
well understood [13,14]). In this Letter we systematically
study the effect of circuit repetition for shadow tomogra-
phy, which to the best of our knowledge has not been
studied before, using tools from representation theory. We
also apply those tools to the question of whether median-of-
means estimators, another key component of the HKP
proposal, are actually necessary for shadow tomography.
Thrifty shadow estimation.—We introduce thrifty

shadow estimation, our variant of shadow estimation that
reuses quantum circuits and can be significantly more
economic in practice. The standard and thrifty protocols are
summarized in Fig. 1.
We write N for the total number of measurements, R for

the number of times that a random circuit is reused
(including the first time) and K for the number of batches
in the median-of-means estimator. We will assume that N is
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a multiple ofKR throughout this section. Thus, the protocol
uses N=R random quantum circuits. Note that thrifty
shadow estimation reduces to ordinary shadow estimation
for R ¼ 1. To analyze its statistical performance, note that
the thrifty estimator ôR is the median-of-means estimator
for N=R many independent identically distributed (i.i.d.)
copies of the random variable

XR ¼ 1

R

XR
r¼1

XðrÞ; ð1Þ

where XðrÞ ¼ Tr
�
OF−1ðUjxðrÞihxðrÞjU†Þ�, with U drawn

uniformly at random from the circuit set U, and
xð1Þ;…;xðRÞ drawn i.i.d. from the conditional distribution

pðxjUÞ ¼ hxjUρU†jxi:

Finally, F−1 is the inverse of the quantum channel F ,

F ðAÞ ≔
X

x∈ f0;1gn
EU∈UU†jxihxjUhajUAU†jxi; ð2Þ

associated with the circuit set U and the computa-
tional basis measurement [15]. It can be shown that
EðXRÞ ¼ TrðOρÞ.
This directly suggests the following protocol for esti-

mating expectation values TrðOρÞ: sample R times from the
distribution pðxjUÞ, compute the corresponding states
F−1ðU†jxihxjUÞ and construct an estimator for the mean.
Concretely, it was shown (for standard shadow tomo-
graphy) in [4] that if one obtains N random samples

fðÛt; x̂tÞgNt¼1, corresponding to N independent random
circuits, groups those into K equal-size batches, and com-
putes the median-of-means estimator ô as in Fig. 1(a), then
one can obtain with high probability an accurate estimate of
the desired expectation value. This directly generalizes to
thrifty shadow estimation.
In particular, if we set the batch size K ¼ ⌈8 logð1=δÞ⌉

for δ∈ ð0; 1Þ, then [16], Theorem 2, implies that for any
fixed observable O,

jôR − TrðOρÞj ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32VRðO; ρÞ logð1=δÞ

N=R

s
;

with probability at least 1 − δ, where VRðO; ρÞ is the
variance of the random variable XR. Our first result
characterizes this variance:
Lemma 1.—The variance of the random variable XR is

given by

VRðO; ρÞ ¼ 1

R
VðO; ρÞ þ R − 1

R
V�ðO; ρÞ; ð3Þ

where VðO; ρÞ is the variance of the random variableX1, as
in ordinary shadow estimation, while

V�ðO; ρÞ ≔ V
�
EðX1jUÞ

�
¼ VU

�
ExTr

�
OF−1ðU†jxihxjUÞ��: ð4Þ

For the sake of brevity we postpone the proof of this
lemma and all following results to Supplemental Material
[17]. For R ¼ 1 we recover the performance guarantee of

(a) (b)

FIG. 1. (a) The shadow estimation protocol of [4]. A total of N measurements is performed, and each random circuit is used to obtain a
single quantum measurement outcome. The parameter K corresponds to the number of batches in the median-of-means estimator. We
assume thatN is a multiple ofK. The quantum channelF depends on the circuit set, and is given explicitly in Eq. (2). (b) Thrifty shadow
estimation as introduced in this Letter. Each random circuit is reused R times. We again use N to indicate the total number of
measurements, and thusN=R random circuits are generated. The parameterK again corresponds to the number of batches of the median-
of-means estimator. We assume here thatN is a multiple of RK. Note that we sample at least one random circuit per batch, as required for
the median-of-means estimator.
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ordinary shadow estimation [4]. To analyze the thrifty case
R > 1, we need to estimate the term V�ðO; ρÞ, which
depends on the fourth moment of the random circuits. A
straightforward corollary of Lemma 1 (using the law of
total variance) is

VRðO; ρÞ ≤ VðO; ρÞ:
However, this does not imply that thrifty shadow estimation
is always better than ordinary shadow estimation. In fact,
the above argument allows for a range of possibilities,
going from VRðO; ρÞ ≈ VðO; ρÞ=R, in which case thrifty
shadow estimation recovers the guarantees of ordinary
shadow estimation for the same number of measurements
(but might be preferable due to the lower cost of circuit
reuse, as discussed in the introduction), to VRðO; ρÞ≈
VðO; ρÞ, in which case setting R > 1 would be useless.
We will see that both scenarios arise naturally when one
performs thrifty shadow estimation with a unitary 4-design
or the multiqubit Clifford group, respectively. We also give
a parametrized family of circuit models that elegantly
interpolates between these extremes.
Unitary 4-designs.—We begin by analyzing the variance

of thrifty shadow estimation for any circuit set that is a
unitary 4-design. Our objective is to calculate Eq. (3). We
are interested in the limit of many qubits, meaning we will
be happy with estimates that include Oð2−nÞ terms in all
expressions. We obtain the following theorem.
Theorem 2.—The variance of thrifty shadow estimation

with any 4-design circuit set satisfies

VRðO; ρÞ ¼ 1

R
VðO; ρÞ þ R − 1

R
O
�
2−nTrðO2Þ�

for any traceless observable O, with VðO; ρÞ the variance
associated with standard shadow estimation.
The proof of this theorem follows from Schur-Weyl

duality for the unitary group, which is matched by any
unitary 4-design up to fourth order expressions (such as the
variance). A primer on Schur-Weyl duality (in this context
also referred to as Weingarten calculus [18]) can be found
in Supplemental Material [17]. We know that VðO; ρÞ≈
TrðO2Þ, which means shadow estimation is scalable pre-
cisely when TrðO2Þ is polynomially bounded. In this case
Theorem 2 tells us that VRðO; ρÞ and VðO; ρÞ=R are
exponentially close in the number of qubits—in other
words, circuit reuse essentially does not impact the stat-
istical accuracy of shadow estimation. This means that
thrifty shadow tomography, with access to a unitary
4-design will in practice be preferable to standard shadow
tomography. However, demanding access to an exact
unitary 4-design is a strong requirement, which we address
in more detail later.
Multiqubit Cliffords.—Next we will lower bound the

variance of thrifty shadow estimation for the multiqubit
Clifford group. In particular, we will show that there are
states ρ and observables O such that the variance VRðO; ρÞ

in Eq. (3) is independent of R (in the limit of many qubits).
Concretely:
Theorem 3.—Consider thrifty shadow estimation with

the n-qubit Clifford group Cn. For any pure stabilizer state
ρ ¼ jSihSj and the traceless observableO ¼ jSihSj − 2−nI,
we have

VRðO; ρÞ ¼ 2þOð2−nÞ:
The proof of this theorem hinges on the recently developed
Schur-Weyl duality theory for the Clifford group [19] (see
also [20–22]) and can be found in Supplemental Material
[17]. There is thus a striking divergence in behavior
between the Clifford group and 4-design when it comes
to reusing circuits. This result formalizes an observation
already made in experiment [10], and serves as a warning
for future experiments using this circuit set.
An interpolating family.—From the preceding results one

would prefer to perform thrifty shadow estimation with
4-design circuits where circuit reuse is maximally useful.
Unfortunately, no exact constructions of unitary 4-designs
are known (for an arbitrary number of qubits n). Moreover,
the Clifford group is not only useful due to its statistical
properties, but also because it allows for the estimator ôR to
be computed efficiently in classical postprocessing when-
ever the associated observable is a stabilizer state or a Pauli
operator (or a well-behaved combination of these). This is a
property we would like to preserve as much as possible.
With this in mind, and inspired by [23], we consider a
family of circuit sets that interpolates between the extreme
cases discussed above. Recall that the T gate is the non-
Clifford unitary

T ¼
�
1 0

0 eiπ=4

�
:

For a system of n qubits, we denote by T this gate but
acting on the first of n qubits. Then we can consider the
following finite set of quantum circuits for any natural
number k:

Uk ¼ fCkTCk−1 � � �TC0jC0;…; Ck ∈Cng; ð5Þ
This set is at least a 3-design for any k. With increasing k, it
is an approximate t-design of any order [23]. Moreover,
computing classically the overlap TrðOUjxihxjU†Þ for
stabilizer O and U∈Uk, which is required for computing
the estimator ô, can be achieved in time Oð20.396kÞ [24].
We now show that in the limit of large system sizes n, the

variance of thrifty shadow estimation with the circuit set Uk
approaches the result for 4-designs, which is VRðO; ρÞ ≈
VðO; ρÞ=R for observables of bounded Hilbert-Schmidt
norm (Theorem 2), up to an error that decreases exponen-
tially with k, leading to a classical simulation cost that is
inverse polynomial in the desired error.
Theorem 4.—The variance of thrifty shadow estimation

with the circuit set Uk defined in Eq. (5) satisfies

PHYSICAL REVIEW LETTERS 131, 240602 (2023)

240602-3



VRðO; ρÞ − 1

R
VðO; ρÞ ≤ R − 1

R
O
�
2−nTrðO2Þ�

þ R − 1

R
30TrðO2Þ�1þOð2−nÞ�

×

�
3

4
þOð2−nÞ

�
k

for any traceless observable O, with VðO; ρÞ the variance
associated with standard shadow estimation.
While our result is inspired by [23], we do not know how

to deduce it directly from their approximate 4-design result.
The reason for this is again that the support of the shadow
estimation probability distribution pðU; xÞ grows asOð2nÞ,
and hence any additive error term will blow up corres-
pondingly.
The advantage of thrifty shadow estimation with the

interpolating family is best seen by considering a simple
cost model. Set TrðO2Þ ¼ 1 for simplicity, and assume that
generating a new random circuit has cost α ≥ 1 and reusing
it has unit cost. Then we can express the cost C for a total of
N samples as C ¼ ðN=RÞðαþ R − 1Þ. When using a
median of means estimator, the accuracy of thrifty (or
standard for R ¼ 1) shadow estimation with N samples is
proportional to VR=ðN=RÞ (provided N ≥ K⌈8 logð1=δÞ⌉,
so that the estimator is well defined). We can express this in
terms of the total cost C as

VR

N=R
¼ αþ R − 1

C
VR: ð6Þ

This can be minimized to obtain the optimal number of
repetitions R for a fixed random circuit generation cost α
and a fixed total cost budget C. For the homeopathic circuit
family with k T-gates, using Theorem 4 and taking the
maximal possible value of VR, Eq. (6) reads (suppressing
small factors)

VR

N=R
≈
1

C

��
V1

R
þ 30

R − 1

R

�
3

4

�
k
�
ðαþ R − 1Þ

�
;

leading to an optimal choice of R (every value of R
corresponds to a value of N at fixed cost C) given by

R ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − αÞj�V1 − 30ð3=4Þk�j

30ð3=4Þk

s
:

This implies (if V1 ≠ 0 and α > 1) that for any value of α
andC, there is a value of k such that the optimal choice of R
is R ¼ N=K (accounting for the batching requirement in
the median-of-means estimator), corresponding to a pro-
tocol where one samples a single circuit per batch and
repeats it N=K times. The computational cost of strongly
simulating a quantum circuit with kmany T gates currently
[25] scales asOð20.396kÞ [24]. Hence, the optimal value of R
scales roughly with an inverse square ½2 logð3=4Þ=0.396 ≈
−2.08� with the cost of simulation. This means that thrifty
shadow tomography with maximal reuse can be imple-
mented using a circuit set that requires only polynomially

more classical computational resources as compared (tradi-
tional) shadow tomography with the multiqubit Clifford
group. We emphasize that this is a heuristic calculation,
since we are ignoring some small terms in the expression
for the homeopathic variance. In particular it is only
accurate in the regime of many qubits [when the Oð2−nÞ
terms are small]. However, it shows that thrifty shadow
estimation using the homeopathic interpolation circuit set
can be a powerful alternative to standard shadow estimation
when the cost of generating new circuits is high.
Finally,we note that sampling at least one circuit per batch

is a requirement for the median-of-means estimator to
function. To see this, consider the extreme scenario where
only one random circuit is sampled, and repeated many
times, with themeasurement outcomes grouped into batches
as above. As the number of repetitions increases, the
median-of-means estimator will converge to the average
value for the single random circuit, with the only remaining
randomness due to circuit choice. However, this randomness
can still be ill-behaved (in the sense that the distribution is
heavy tailed), precluding exponential concentration of the
estimator, which is required for shadow tomography.
Tail bounds for shadow estimation.—In this section we

revisit the use of median-of-means estimation in shadow
estimation with circuit sets that are (at least) 3-designs. It
has been noted before that for the circuit sets of single-qubit
Clifford gates and matchgates, the median-of-means esti-
mator can be replaced by the standard mean estimator
without a loss in performance [7]. In this section we show
that this is also true if the circuit set is the entire unitary
group, but is not true if the circuit set is the multiqubit
Clifford group. Hence, just like for thrifty shadow estima-
tion, the Clifford group fails to fully emulate the statistical
behavior of Haar random unitaries.
For simplicity, we consider shadow estimation but both

results also hold for thrifty shadow estimation with R > 1.
Throughout this section we will writeXn ¼ X to explicitly
indicate the number of qubits n in a subscript.
Unitary group.—We first consider shadow estimation

with the full unitary group. Somewhat surprisingly, we can
prove subexponential behavior for shadow tomography
with the standard mean estimator.
Theorem 5.—Consider shadow estimation with the n-

qubit unitary group as circuit set, state ρ, and traceless

observable O. For N i.i.d. copies Xð1Þ
n ;…;XðNÞ

n of Xn, we
have a Bernstein-like tail bound:

P

�				1N
XN
i¼1

XðiÞ
n − EðXnÞ

				 ≥ ε

�
≤

8>>>>><
>>>>>:

2 exp


− Nε2

48kOk2HS

�
if ε ≤ 12kOkHS;
2 exp



− Nε

4kOkHS

�
if ε > 12kOkHS:

This theorem again follows from Schur-Weyl duality for
the unitary group and a careful accounting of the moment
generating function of Xn.
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Theorem 5 shows that the median-of-means estimator in
[4] can in principle be replaced by a standard empirical
average, as long as one uses the full unitary group as the
circuit set. This is akin to earlier such results for the single-
qubit Clifford and matchgate groups. However, these earlier
statements were a consequence of the fact that the dis-
tributions being sampled from are bounded for all n
(independently of n, in terms of some separate locality
parameter k), and it is hence not surprising that an
exponential tail bound can be established. On the other
hand, in the case of shadow estimation with the unitary
group (or any 3-design), the support of the distribution
diverges as n → ∞, making such a statement significantly
less trivial. We believe that this exponential tail behavior is
fundamentally a property of the full unitary group, making
it difficult to achieve in practice.
Clifford group.—We will now argue that the opposite

behavior holds when one averages over the multiqubit
Clifford group instead. By this we mean that for shadow
estimation with the Clifford group no “useful” tail bounds
are possible. This is a somewhat awkward statement to
make, as for any finite number of qubits n the distribution
associated with Clifford shadow estimation is bounded on
the interval ½−2n; 2n� (for all input states and observables),
so it is always possible to obtain exponential tail bounds
that grow exponentially in n. In Theorem 6 below we show
that, roughly speaking, one cannot do better (even if TrðO2Þ
is bounded).
Theorem 6.—Consider shadow estimation with the n-

qubit Clifford group as circuit set, any n-qubit stabilizer
state ρ ¼ jSihSj, and the observable O ¼ jSihSj − 2−nI, so
that TrðO2Þ ≤ 1. Suppose that the random variables Xn
satisfies a tail bound of the form

PðjXn − EðXnÞj ≥ tÞ ≤ A exp

�
−

tβ

Bn

�
; ð7Þ

for constants A; β > 0 and a positive sequence ðBnÞ. Then
we have that Bn ¼ Ω̃ð2βn=4Þ. The key technical tool in this
proof is a characterization of the mth moments of Xn,
through the Schur-Weyl duality theory for the Clifford
group. Concretely, we obtain the following formula, which
might be of independent interest:

EðXm
n Þ ¼ ð2nþ 1Þm

Xm
k¼0

�
m
k

�
ð−1Þm−k2−nðm−kÞYk−1

l¼0

2lþ 1

2lþ 2n
:

ð8Þ
One can see that the moments EðXm

n Þ ofXn grow fast with
m, and moreover increasingly so as n increases. This is key
to the proof of Theorem 6. Note, however, that for fixed n
the growth of the moments levels off when m ≫ n (since
Xn is ultimately a bounded random variable). Hence, it is
natural to discuss the behavior of the moments as we let n
tend to infinity for fixed m. In the case of the unitary group
(as we saw in the proof of Theorem 5, the limiting moments

grow slowly enough with m to uniquely define a limiting
random variable, with moments that are the limits of the
moments of the random variables at finite n. However, this
is not the case for the multi-qubit Clifford group. In the
limit we have

lim
n→∞

EðXm
n Þ ¼

Xm
k¼0

�
m
k

�
ð−1Þm−k

Yk−1
l¼0

ð2l þ 1Þ:

Form ≥ 6, the right-hand side this can be lower bounded as
follows:

lim
n→∞

EðXm
n Þ ≥ 2½mðm−1Þ�=2 ¼ Ωð2m2=2Þ;

which shows that the moments grow superexponentially. In
fact, they grow so fast that any random variable with those
moments would have a moment generating function with
convergence radius zero (and would hence be genuinely
heavy tailed). However, the moments grow so fast it is not
even clear whether the limiting moments determine a
unique probability distribution.

Note added.— Recently, Ref. [26] reported on independent
related results.
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