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In the standard quantum theory, the causal order of occurrence between events is prescribed, and must be
definite. This has been maintained in all conventional scenarios of operation for quantum batteries. In this
study we take a step further to allow the charging of quantum batteries in an indefinite causal order (ICO).
We propose a nonunitary dynamics-based charging protocol and experimentally investigate this using a
photonic quantum switch. Our results demonstrate that both the amount of energy charged and the thermal
efficiency can be boosted simultaneously. Moreover, we reveal a counterintuitive effect that a relatively less
powerful charger guarantees a charged battery with more energy at a higher efficiency. Through
investigation of different charger configurations, we find that ICO protocol can outperform the conven-
tional protocols and gives rise to the anomalous inverse interaction effect. Our findings highlight a
fundamental difference between the novelties arising from ICO and other coherently controlled processes,
providing new insights into ICO and its potential applications.

DOI: 10.1103/PhysRevLett.131.240401

Introduction.—The counterintuitive behavior of a quan-
tum system occupying coherently superposed states marks
the departure of quantum physics from the classical realm.
Notably, quantum superposition, and other nonclassical
resources like entanglement are at the center of this
surge of activity, as their existence lies at the root of a
broad-spectrum impact on many fields, including quantum
information, quantum optics, and quantum thermo-
dynamics [1–7]. In the emerging field of quantum thermo-
dynamics, the primary objective of quantum batteries
research is to develop energy storage devices [8].
Quantum coherence is a crucial component in many quan-
tum technologies and plays a significant role in quantum
batteries [9–11]. Recent studies have focused on optimizing
charging power [12,13], battery stability [14,15], and the
role of nonclassical resources in this context [16–18].
On the other hand, contemporary physics has made

significant efforts to reconcile two key pillars of our
fundamental understanding of the universe: general rela-
tivity and quantum mechanics. Despite the absence of a full
theory of quantum gravity, it is conjectured that modifica-
tions to the concept of causal structure should be incorpo-
rated into quantum gravity. In general relativity, dynamic
causal structures exist, and introducing a quantum
mechanical nature may result in exotic superpositions of
the causal order of events. Processes where the causal order
becomes nonseparable or indefinite have been discovered
to exhibit the features of indefinite causal order [19].
Putting it simply, it has been found that the laws of
quantum mechanics allow for quantum superposition of
causal orders.

Conventionally, even within the context of quantum
mechanics, events can only occur in a fixed causal order,
meaning either “event A takes place before event B” or its

FIG. 1. Illustrations of the three scenarios. (a) DCO scenarios,
where two chargers are sequentially arranged, resulting in either
C1∘ C2 (upper) or C2∘ C1 (lower) configurations. (b) ICO charging
realized by a QS that entangles two causal orders, allowing the
causal order of operations on a quantum battery to be in a
quantum superposition by preparing the order system in a
superposition state. (c) NUCC protocol based on coherently
controlling the path a battery takes, thereby achieving the effect
of performing charging with C1 and C2 simultaneously.
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reverse holds true. This conventional scenario is referred to
as definite causal order (DCO). Recently, however, these
constraints have been relaxed, allowing the two possibil-
ities to be in superposition and leading to ICO. This exotic
process can be realized using a quantum switch (QS) [20]
to superimpose the causal order of events. A QS can be
considered as a device that accepts two channels as inputs,
and depending on the state of an order qubit, outputs a
quantum superposition of channels in different causal
orders. It has been demonstrated that QS is incompatible
with the conventional assumption of fixed causal orders,
and the inability of decomposing a QS into DCO processes
has been explored [21].
Recent research on ICO has recognized it as a valuable

resource, see Ref. [22] for a discussion in the thermo-
dynamics context. Utilizing ICO offers numerous advan-
tages in fields such as quantum communication [23–33],
quantum computation [20,34–37], metrology [38–40],
thermodynamics [41–47], and other quantum information
tasks [48,49]. In quantum thermodynamics, incorporating
ICO into thermalizing processes has led to the develop-
ment of novel quantum refrigerators that have also been
experimentally demonstrated [50]. Experimental investi-
gations on ICO primarily rely on implementing a QS
device [51–61].
In this Letter, through experimental realization of pho-

tonic QS and quantum simulation of QB, we present a
novel scenario of ICO charging processes. To achieve this,
we first construct a charging protocol that is based on
nonunitary dynamics. Notably, the energy charged can be
boosted to surpass population inversion, which is the best a
conventional protocol can achieve, and the thermal effi-
ciency, which is the ratio of ergotropy [62] to the corre-
sponding work, also increases. Our result suggests that both
quantities can break the bounds in the old scenario. We then
demonstrate a strikingly counterintuitive effect: weaker
coupling strength between the battery and ancillae results
in more energy being charged, improving thermal effi-
ciency. Through comparing charging processes in different
scenarios, we finally address the essential and unique role
ICO plays in outperforming conventional protocols and
giving rise to the anomalous effect of weaker coupling with
better performance.
Theoretical ideas.—Consider a situation where one has

two chargers; classically, the order of operation of the two
chargers C1 and C2 can be arranged so that the battery
encounters C1 before C2, or vice versa. These are simply
DCO scenarios. We can go a step further, as shown
in Fig. 1(b), where the two chargers are arranged in a
quantum superposition of two different configurations, i.e.,
a battery undergoes C1∘ C2 and C2∘ C1 simultaneously. This
exotic scenario of ICO can be realized using a QS with the
following mathematical description:

SmnðtÞ ¼ j0ih0jO ⊗ Kn
2ðt=2ÞKm

1 ðt=2Þ
þ j1ih1jO ⊗ Km

1 ðt=2ÞKn
2ðt=2Þ; ð1Þ

where KmðnÞ
1ð2Þ describe the action of C1ð2Þ in the Kraus form,

with the superscriptmðnÞ counting the number of the Kraus
operators, and fj0iO; j1iOg forms the basis of the order
qubit. As a third scenario, the nonunitary coherently
controlled (NUCC) protocol, illustrated in Fig. 1(c), lies
between the two we introduced. This protocol employs a
control qubit that determines the target charger with which
the battery interacts, enabling parallel charger application.
We use the following Hamiltonian as the model for our

quantum battery:

HB ¼ ω

2
ðjeihejB − jgihgjBÞ; ð2Þ

where HB is represented in terms of its energy spectrum,
with fjeiB; jgiBg being the energy basis, and ω > 0. Our
quantum battery can be defined by associating its full and
empty states with jeiB and jgiB.
Next, to specify the KmðnÞ

1ð2Þ in Eq. (1), we consider
the charging dynamics and represent the dynamical
map describing the time evolution in the Kraus form.
By adopting the nonunitary evolution-based protocol in
[63], one can make several identical ancillae repeatedly
interact with the battery to achieve charging (a uni-
tary evolution-based one is presented in S3 of the
Supplemental Material [64], where ICO also demonstrates
its advantage). Here, we consider the ancillae Hamiltonian
HA ¼ ω=2ðjeihejA − jgihgjAÞ, and assume that the inter-
action Hamiltonian is

HI ¼ κðσþB ⊗ σþA þ σ−B ⊗ σ−AÞ; ð3Þ

with σþBðAÞ ¼ jeihgjBðAÞ, σ−BðAÞ ¼ jgihejBðAÞ, and κ > 0.

FIG. 2. Experimental setup, illustrating single photons pro-
duced through the type-I spontaneous parametric down-
conversion (SPDC) process. A Mach-Zehnder interferometer
structure realizes a QS, enabling the ICO charging process.
The projecting measurements are carried out via a combination of
QWP-HWP-PBS. Beam splitter (BS), half-wave plate (HWP),
quarter-wave plate (QWP), beam displacer (BD), polarization
beam splitter (PBS), β-barium borate (BBO), interference filter
(IF), avalanche photodiode (APD).

PHYSICAL REVIEW LETTERS 131, 240401 (2023)

240401-2



Let us assume that the initial state is mixed, such that
ρB¼pjeihejBþð1−pÞjgihgjB, where 0 ≤ p ≤ 1=2. Next,

we represent the dynamical map via KmðnÞ
1ð2Þ ≔KμνðtÞ¼

ffiffiffiffiffi
Pν

p

hμjAUðtÞjνiA, where UðtÞ ¼ exp½−iℏtðHBþHAþHIÞ�,
μ; ν∈ fe; gg;ℏ ¼ 1 and assume that the ancilla is initialized
to be ρA ¼ pjeihejA þ ð1 − pÞjgihgjA, so that Pe ¼ p,
Pg ¼ 1 − p. The map between μν and mðnÞ is, for
example, μν∶ee ↦ mðnÞ∶0. There are four terms in the
set of Kraus operators (see S1 in [64]): as an example,

K0
1ð2Þ ≔ Kee ¼

ffiffiffiffi
p

p ðαjeihejB þ jgihgjBÞ; ð4Þ

where α ¼ cos ðΘt=2Þ − iðω=ΘÞ sin ðΘt=2Þ, and
Θ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2þω2

p
.

Under the current consideration, C1 and C2 are identical,
see Ref. [64] for a discussion of asymmetrical chargers
with distinct coupling strengths. The time evolution
ρOBð0Þ ↦ ρOBðtÞ can be obtained via SWðρOBÞ ≔P

mn SmnðtÞðρO ⊗ ρBÞS†
mnðtÞ. Subsequently, we trace out

the order qubit degrees of freedom after performing a
projective measurement. Interesting outcomes arise in the
ρ−BðtÞ branch as it outperforms conventional scenarios and
exhibits the anomalous effect, where ρ�B ðtÞ ¼ TrO½j�i
h�jOρOBðtÞj�ih�jO� and j�iO ¼ ðj0iO � j1iOÞ= ffiffiffi

2
p

. Our
protocol is of probabilistic nature, and the corresponding
probability of success reads PsuccðtÞ ¼ Tr½ρ−BðtÞ�.
In the following section, we characterize the ICOprotocol

from several perspectives, explaining in detail the intriguing
aspects of the ρ−BðtÞ branch. First, we examine the amount of
energy in the battery. We introduce a quantity termed
population ratio, which encodes information about the
battery state, defined as R ¼ hejBρjeiB=hgjBρjgiB.
It turns out that the population ratio can be boosted using

our protocol. Meanwhile, one might wonder whether some
form of sacrifice accompanies this advantage, in terms of,
such as thermal efficiency. Interestingly, contrary to this
naive expectation, we will demonstrate an enhancement
in thermal efficiency. To proceed, we first define the varia-
tion in energy of the ancillae as heat, ΔQ ¼ −ðTr½ρ−A1A2

HA1A2
�=Tr½ρ−A1A2

� − Tr½ρA1A2
HA1A2

�Þ. As the battery
energy changes by ΔE ¼ Tr½ρ−BHB�=Tr½ρ−B� − Tr½ρBHB�,
by the first law [70], work is defined as ΔW ¼
Tr½ρ−BA1A2

HBA1A2
�=Tr½ρ−BA1A2

� − Tr½ρBA1A2
HBA1A2

�, where
A1ð2Þ denotes the first (second) ancilla. Another figure
of merit we will use is ergotropy [62], defined as
E ¼ maxUTr½ðρ − UρU†ÞH�. Thus, thermal efficiency is
defined as η ¼ E=ΔW.
Experiments.—As illustrated in Fig. 2, we experimen-

tally realize the ICO charging process on a photonic
system. In our implementation, the polarizations are
encoded as battery qubits. The first beam splitter (BS1
in Fig. 2) introduces spatial modes which are encoded as
the order qubit, being initially jþiO. BS2 projects it onto

j�iO. The two charging processes appear in alternating
order in the two arms of a Mach-Zehnder interferometer
(MZI) [71–73]. Depending on the state of the order qubit
(j0iO or j1iO), the battery undergoes charging dynamics in
the order of C1∘ C2 or vice versa. Such a realization of
photonic QS enables ICO charging processes.

The Kraus operators KmðnÞ
1ð2Þ for the process C1ð2Þ can be

realized [74–76] by the “Kraus”module as shown in Fig. 2.
By concurrently deploying two modules for a pair of Kraus
operators, Km

1 and Kn
2 , in the arms of the MZI, a QS in the

form of Eq. (1) is realized (see Ref. [64]). The probabilities
refer to parameters p and 1 − p are applied in post-
processing, by evaluating the ratios of the measurement
outcomes from 16 separated experiments, thereby realizing
the composite QS channel SWðρOBÞ. For comparison, we
also experimentally investigate the NUCC and DCO
scenarios. The NUCC process is achieved by adjusting
the position of C1ð2Þ for single-arm photon passage in the
MZI. For the DCO process we remove the BSs of the
MZI, allowing the battery to interact with C1 and C2
successively, with a process fidelity [67,68,77–79] above
99%, which is obtained by performing quantum process
tomography [64].
Experimental results.—The population ratio of ρ−BðtÞ is

denoted asR−ðtÞ. One naturally pays special attention to its
maximum and minimum values. The two extrema, R−

min
and R−

max are

R−
min ¼

1 − p
p

ω2ð1 − pÞ þ κ2p2

ω2pþ κ2ð1 − pÞ2 ; ð5aÞ

R−
max ¼

�
1 − p
p

�
2

: ð5bÞ

We also examine the population ratio R−� , for which the
corresponding success probability is maximized (see S1
in [64] for the derivation and expression for R−� ). Next, we
examine what merits the ICO protocol compared to the
DCO scenario. In terms of population ratio, the DCO
protocol has the performance:

RD
max ¼

κ4ð1 − pÞ þ 2κ2ω2ð1 − pÞ þ ω4p
κ4pþ 2κ2ω2pþ ω4ð1 − pÞ : ð6Þ

Let us consider two regimes to gain insight into the
physics of Eq. (6): First, when κ ≪ ω, we find that
RD

max ≈ p=ð1 − pÞ, as does RDðtÞ [64]. Thus, RDðtÞ is
flat, hence the battery almost remains unchanged. However,
for κ ≫ ω, we have RD

max ≈ ð1 − pÞ=p. Therefore, the best
effect of the DCO protocol is population inversion, which is
possible either by weakly coupling many copies of ancilla
or with fewer ancillae but requires rather strong coupling.
Figure 3(a) shows the dependence of R−� , R−

max, R−
min, and

RD
max on κ=ω, on a logarithmic scale. Hence, a value of
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logð1−pÞ=pR exceeding 1 is a signature of an advantage
over the DCO protocol.
In the ICO protocol, an advantage in terms of population

ratio is marked by the second power in Eq. (5b). Although
coming with a vanishing probability,R−

max severs as a good
estimation of the behavior of R−ðtÞ in the weak coupling
regime, as explained later. Notice that unlike the maximum,
Eq. (5a) depends on the system parameters and in fact may
be worse than population inversion. As illustrated in
Fig. 3(a), for κ=ω < 1, R−

min breaks the DCO-scenario
bound, implying thatR−ðtÞ never falls out of the advantage
region for any t. Taking R−

max as an estimation is typically
useful when κ ≪ ω, because the difference between R−

max
and R−

min vanishes if κ=ω becomes sufficiently small.
Consequently, R−ðtÞ tends to be flat as its oscillation
diminishes. Therefore, within the limit of κ=ω → 0,
R−ðtÞ ≈ ð1 − pÞ2=p2 holds for all t. As a remark, the
probability of R−ðtÞ vanishes if κ=ω ¼ 0 as the two
charging processes reduce into two equivalent unitaries
(see S2 in [64]), and hence our assumption of κ > 0. R−� is
always located above the upper bound of the DCO protocol
regardless of the initial state [Fig. 4(a)], or the coupling
strength κ=ω [Fig. 3(a)].
Moreover, for a fixed ω, the relationship between R−�

and κ is inverse; in other words, weaker coupling dynamics
results in a higher R−� , as shown in Fig. 3(a). Next, we
compare the ICO protocol with the NUCC protocol.
Interestingly, R−

min is equivalent to RN;−
max (see S2 in [64])

but with the replacement κ=ω → ðκ=ωÞ−1. The theoretical
predictions and experimental results of RN;−� (the NUCC
counterpart of R−� ; see S2 in [64] for the derivation and
expression) are plotted in Fig. 3(a) as orange lines and dots.
This indicates that RN;−� is an increasing function of κ=ω,
which is a feature shared by both the DCO and NUCC
protocols. From this comparison, we conclude that the
inverse relationship between κ=ω and performance can be
uniquely attributed to ICO dynamics. This demonstrates an

anomalous effect exclusive to ICO, unlike its role in other
contexts. For instance, ICO is not the only resource that
can activate communication abilities in noisy channels;
similar effects can also be achieved by coherent control
schemes [80]. This property offers some advantages for
practical implementations and uncovers a previously unex-
plored inverse interaction effect. See S2 in [64] for an
explanation of the anomalous effect.
From the perspective of thermal efficiency, η−ðtÞ (see

Ref. [64]) exhibits a behavior similar to R−ðtÞ, where

η−min ¼
ω2 − κ2pð1 − pÞ

2ω2ð1 − pþ p2Þ þ κ2pð1 − pÞ ; ð7aÞ

η−max ¼
1

2 − 2pð1 − pÞ : ð7bÞ

The thermal efficiency is meaningful when the charged
battery is not passive [62], from which energy can be
extracted unitarily. This condition is equivalent to the extent
to which the population of jeiB dominates, and requires
κ=ω < 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p − p2

p
. As shown in Ref. [63], the thermal

efficiency of the DCO is upper bounded by 1=2. However,
for κ=ω <

ffiffiffiffiffiffiffiffi
2=3

p
, η−min exceeds 1=2. The relationship

between η−min and ηN;−max of the NUCC scenario (see S2
in [64]) is the same as for population ratio. Furthermore, in
the weak coupling limit η−ðtÞ ≈ η−max ¼ 2=3. Similar toR−� ,
the behavior of η−� (see Ref. [64]) is shown in Fig. 3(b).
For fixed coupling strengths, the performances evaluated

for different initial states (p varying from 0 to 0.5) are
shown in Fig. 4. The gray lines represent both the
theoretical ICO-scenario lower bound and the DCO-
scenario upper bound. The results clearly demonstrate that
the ICO protocol can outperform the DCO protocol
irrespective of the initial state.
Conclusion.—We proposed ICO quantum battery

charging protocols and experimentally studied them in a
photonic system. By comparing charging processes in three

FIG. 3. Coupling strength dependence of performance for ICO
charging protocol, its DCO, and NUCC counterparts. (a) Loga-
rithm for population ratio logð1−pÞ=pR versus κ=ω. R−� , R−

max,
R−

min, R
D
max, and RN;−� are shown by (blue) solid, dashed, dotted,

red, and orange curves, respectively. The corresponding exper-
imental results are shown by symbols. (b) Thermal efficiency η
versus κ=ω, where the meaning of curves(dots) with distinct
colors are similar to those in (a).

FIG. 4. Performance of protocol with fixed coupling strength
(κ=ω ¼ 1). (a) Population ratio R versus parameter p of initial
battery states. (b) Thermal efficiency η versus p. Experimental
results and theoretical predictions are shown by dots and curves,
respectively. Blue and red curves correspond to R−� (η−� ) and RD

(ηD), while gray curve represents RD (ηD) with coupling strength
set to infinity.
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scenarios, we demonstrated that ICO plays an essential role
in outperforming conventional protocols, leading to the
emergence of the counterintuitive effect. We expect that
these novel findings of ICO will advance future quantum
technologies.
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