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Relations among von Neumann entropies of different parts of an N-partite quantum system have direct
impact on our understanding of diverse situations ranging from spin systems to quantum coding theory and
black holes. Best formulated in terms of the set Σ�

N of possible vectors comprising the entropies of the
whole and its parts, the famous strong subaddivity inequality constrains its closure Σ̄�

N , which is a convex
cone. Further homogeneous constrained inequalities are also known. In this Letter we provide
(nonhomogeneous) inequalities that constrain Σ�

N near the apex (the vector of zero entropies) of Σ̄�
N , in

particular showing that Σ�
N is not a cone for N ≥ 3. Our inequalities apply to vectors with certain entropy

constraints saturated and, in particular, they show that while it is always possible to upscale an entropy
vector to arbitrary integer multiples it is not always possible to downscale it to arbitrarily small size, thus
answering a question posed by Winter.
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Introduction.—Entropy is a very important concept in
physics, whose role and status have vastly expanded past its
original boundaries within thermodynamics. It is a main
object of study in many areas of research, including
quantum cryptography, information theory, black holes,
and more.
In models of the world, it is often very advantageous and

natural to consider large systems as composed of smaller
distinct subsystems. This calls for a good understanding of
the relations among entropies of different subsystems of a
joint system. The most important such relation is without a
doubt the strong subaddivity inequality [1], which entails
all other known entropy inequalities for multipartite quan-
tum systems and has long been appreciated in quantum
information theory. There has naturally been a great interest
in finding new such inequalities. The problem of finding
new entropy inequalities is an aspect of a more general
research endeavour to adequately describe the set of
possible values that the different allocations of entropy
in a multipartite system can take, i.e., to determine whether
or not any given ordered set of numbers corresponds to an
achievable entropy vector, by which we mean the entropy
values of the marginals of some quantum state.
In this Letter, we prove a new relationship between the

entropies of a multipartite system, which rules out the
possibility of constructing certain small entropy vectors
that otherwise satisfy strong subadditivity and related

inequalities. This result, interestingly, entails that the set
of achievable entropy vectors is neither a cone nor a closed
set—thus answering a question left open in an influential
paper by Pippenger [2]. We additionally discuss applica-
tions of the new results to a diverse set of areas—namely,
topological materials, entanglement theory, and quantum
cryptography.
In the remainder of this introduction, we shall introduce

some necessary notation and relevant background concern-
ing the quantum entropy cone. The main results are
presented in the following section, after which we discuss
some applications and provide a conclusion and outlook for
this Letter.
Given a quantum system X in a state described by a

density operator ρ, i.e., a non-negative operator of trace 1
on a (finite dimensional) Hilbert space HX, its von
Neumann entropy is given by

Hρ ¼ −Tr½ρ logðρÞ� ¼ −
X

i

λi logðλiÞ; ð1Þ

where λi are the eigenvalues of ρ, and log denotes the
binary logarithm. We shall be concerned with multipartite
systems N consisting of N constituent systems X1;…; XN
with associated Hilbert spaces HX1

;…;HXN
, such that

the state of N is given by a density operator ρ on
HX1

⊗ … ⊗ HXN
. The reduced state of a subsystem

X ⊆ N is then given by

ρX ≔ TrN nX ½ρ�;

where TrN nX ½·� denotes the partial trace over ⊗Xi∉X HXi

(and in particular ρ ¼ ρN ). The entropyHρX of the reduced
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state will also be denoted by HðXÞρ or by HðXi1…XikÞρ, if
X ¼ fXi1 ;…; Xikg. These marginal entropies define a

vector H⃗ρ ∈R2N−1, called the entropy vector of ρ, whose
coordinates are labeled by the nonempty subsystems of N .
E.g., for N ¼ 2 and N ¼ fA;Bg we have H⃗ρ ¼
½HðAÞ; HðBÞ; HðABÞ�ρ ∈R3, while for N ¼ 3 and N ¼
fA; B;Cg we write

H⃗ρ ¼ ½HðAÞ; HðBÞ; HðCÞ; HðBCÞ;
HðACÞ; HðABÞ; HðABCÞ�ρ ∈R7: ð2Þ

The main object of study in this context is the set Σ�
N of all

possible entropy vectors associated to N-partite systems,

Σ�
N ¼ fH⃗ρ ∈R2N−1jρ is a density operator onN g:

It is a fundamental result of Pippenger [2] that the
topological closure Σ̄�

N of Σ�
N in R2N−1 is a convex cone,

called the quantum entropy cone of N-partite systems, i.e.,
Σ̄�
N is closed under addition and under multiplication by

positive scalars. It is also known, and easy to demonstrate,
that Σ�

N has full dimension, i.e., it spans all of R2N−1 as a
vector space, and that Σ̄�

N and Σ�
N have identical interiors

and hence also identical boundaries. For N ¼ 2 it is even
true that Σ̄�

2 ¼ Σ�
2 as will be commented on further below.

But for generalN ≥ 3 an appropriate characterization of the
boundary entropy vectors is missing [3].
A related but different long-standing problem is to

determine whether or not Σ̄�
N is a polyhedral cone, i.e.,

if it can be specified in terms of a finite number of linear
inequalities. The known general inequalities of this sort are
of two types:

HðXÞ þHðYÞ ≥ HðX ∩ YÞ þHðX ∪ YÞ; ð3Þ

HðXÞ þHðYÞ ≥ HðXnYÞ þHðYnXÞ; ð4Þ

called strong subadditivity and weak monotonocity, respec-
tively. Here, X and Y are arbitrary subsystems, and by
convention we have Hð0Þ ¼ 0. We emphasize that not all
inequalities of the forms above are independent. Strong
subadditivity was first established in [5], but a variety of
proofs exist in the literature, see, e.g., Refs. [1,6–10]. To
obtain weak monotonicity one makes use of the fact,
referred to as purification [8], that given a state ρ of N
it is always possible to extend N by a system Y and to
define a pure state η ¼ jVihVi ofN ∪ Y such that ρ ¼ ηN .
The polyhedral cone defined by (3) and (4) is a closed

convex cone, and will here be denoted ΣN . The question of
whether ΣN ¼ Σ̄�

N, or if there exist further independent
linear inequalities beyond (3) and (4), remains open for
N ≥ 4. For N ≤ 3 the two closed cones coincide as shown
in [2]. While it is quite easy to see that ΣN ¼ Σ�

N ¼ Σ̄�
N hold

for N ≤ 2, the case N ≥ 3 is different. It has been shown
that for N ≥ 4 there exist further constrained homogeneous
linear inequalities [11–13].
We shall now delve a bit deeper into the details of the

case N ¼ 3, where the relevant inequalities are

IXY ≔ HðXÞ þHðYÞ −HðXYÞ ≥ 0;

IIXY ≔ HðXZÞ þHðYZÞ −HðZÞ −HðXYZÞ ≥ 0;

IIIXY ≔ HðZÞ þHðXYZÞ −HðXYÞ ≥ 0;

IVXY ≔ HðXZÞ þHðYZÞ −HðXÞ −HðYÞ ≥ 0;

valid for fX; Yg equaling fA; Bg, fA;Cg, or fB;Cg with
Z ≠ X, Y. This makes a total of twelve inequalities, three of
each type. A key observation is that

M ≔ IXY − IIXY ¼ IIIXY − IVXY ð5Þ

is independent of the choice of fX; Yg. It follows that Σ3 is
a union of two cones

Σþ
3 ∶ IIXY ≥ 0; IVXY ≥ 0; M ≥ 0; ð6Þ

Σ−
3 ∶ IXY ≥ 0; IIIXY ≥ 0; M ≤ 0; ð7Þ

each of which has seven facets, corresponding to their
seven defining inequalities.
By a slight elaboration of Pippenger’s approach [2] it can

be shown that Σþ
3 ⊂ Σ�

3, while Σ−
3 behaves differently. For

any H⃗∈Σ−
3 one finds that there exists a quantum state ρ and

a vector ⃗l belonging to the one-dimensional face (half-line)
l of Σ−

3 defined by the six equations

l∶ IXY ¼ 0; IIIXY ¼ 0; ð8Þ

such that

H⃗ ¼ ⃗lþ H⃗ρ: ð9Þ

If it so happened that l ⊂ Σ�
3, it would follow by the

additivity of entropy vectors in suitably constructed product
states that Σ−

3 ⊂ Σ�
3 and hence that Σ3 ¼ Σ�

3. However, as a
consequence of Theorem 1 below there is an open line
segment of l ending at the apex which is not contained in
Σ�
3, and so Σ3 ≠ Σ�

3. On the other hand, Pippenger identifies
a state ρl such that H⃗ρl ∈l, which by the cone property
implies that l ⊂ Σ̄�

3. Using (9) one then obtains that
Σ−
3 ⊂ Σ̄�

3 and, consequently, Σ3 ¼ Σ̄�
3, which is the already

mentioned main result of [2].
In order to satisfy (8), the entropy vector H⃗ρl must

satisfy

IðX∶YÞρl ¼ 0; HðXÞρl þHðXYZÞρl ¼ HðYZÞρl ð10Þ
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for any pair fX; Yg in N ¼ fA;B; Cg with Z ≠ X, Y,
where the more standard notation IðX∶YÞ has been used
instead of IXY for the quantum mutual information. By
purification one can alternatively consider a state η ¼
jVihVi on a 4-partite system fA;B;C;Dg such that
ρl ¼ ηN . Such a pure state makes the equations (10) take
on the more symmetric form

IðXi∶ XjÞη ¼ 0 ð11Þ

for all pairs Xi, Xj in fA; B;C;Dg. Indeed, the state ρl is
obtained in [2] by first constructing such a pure state η.
Our main theorem below concerns pure states of arbitrary
N-partite systems that fulfill the conditions (11) for fixed i,
showing that sufficiently small scalar multiples of their
entropy vectors lie outside Σ�

N , i.e., cannot be realized by
quantum states. For the sake of completeness we exhibit in
the Supplemental Material [14], for arbitrary N ≥ 4, states
which fulfill the stated conditions, and thus generalizing the
pure state η mentioned above.
Main results.—The goal of this section is to establish the

following entropy bound.
Theorem 1.—Let ρ be a pure state of the N-partite

system N ¼ fX1;…; XNg such that HðX1Þρ ≠ 0. Suppose
further that

IðX1∶ XiÞρ ¼ 0 for all i ¼ 2;…; N:

Then the following bound holds:

XN

i¼1

HðXiÞρ > 1: ð12Þ

The conditions in the theorem are illustrated in Fig. 1.
Note that they can only be satisfied if N ≥ 4.
To establish Theorem 1, we first list three lemmas below

which are the main ingredients in the subsequent proof.
Their demonstrations are provided in Sec. A of the
Supplemental Material [14]. We will use the following
notation. Given a state ρ of N , we denote by λi1 ≥ λi2 ≥ …
the eigenvalues of ρXi

in decreasing order and by
jei1i; jei2i;… a corresponding orthonormal eigenstate basis

such that

ðρXi
Þab ≔ heiajρXi

jeibi ¼ λiaδab: ð13Þ

Moreover, we define

ϵi ≔ 1 − λi1 and ε ≔
XN

i¼1

ϵi: ð14Þ

Clearly,
P

xi>1 λ
i
xi ¼ ϵi and one easily verifies that

HðXiÞ ≥ maxfhðϵiÞ;− logð1 − ϵiÞg ≥ 2ϵi; ð15Þ

where h denotes the binary entropy function,

hðxÞ ¼ −x log x − ð1 − xÞ logð1 − xÞ:

Assuming ρ to be pure, i.e., ρ ¼ jVihVi where hVjVi ¼ 1,
we represent jViwith respect to the basis forHN consisting
of tensor products of eigenstates jeiai for the single-party
density matrices; that is

jVi ¼
X

x1;…;xN

Vx1…xN je1x1…eNxN i; ð16Þ

where
X

x1;…;xN

jVx1…xN j2 ¼ 1: ð17Þ

A sum over dummy indices xi ∈N will here always run
up to dimðHXi

Þ. The matrix elements of ρN and the re-
duced states are quadratic expressions of the components
of jVi; e.g.,

ðρX1
Þa b ¼

X

x2;…;xN

Vax2…xNV
�
bx2…xN

; ð18Þ

ðρX1X2
Þa1a2 b1b2 ¼

X

x3;…;xN

Va1a2x3…xNV
�
b1b2x3…xN

: ð19Þ

Extensive use will be made of the fact that IðXi∶ XjÞ ¼ 0

holds if and only if ρXiXj
is a product state, which in our

notation and choice of basis means that

ðρXiXj
Þa1a2 b1b2 ¼ λia1λ

j
a2δa1b1δa2b2 : ð20Þ

The announced lemmas relate the ϵi’s to the components of
V as follows.
Lemma 1.—For any pure state ρ it holds that

jV1…1j2 ≥ 1 − ε: ð21Þ

FIG. 1. The conditions of Theorem 1 are here represented with
each circle denoting a constituent system Xi. The double lines
indicate that the mutual information between the two systems is
0, and it is assumed that the total state is pure.
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Lemma 2.—For any pure state ρ such that IðX1∶XjÞ¼0
for all j ≠ 1 we have

X

x1>1

jVx11…1j2 ≥ ϵ1ð1þ ϵ1 − εÞ: ð22Þ

Lemma 3.—For any pure state ρ it holds that

ð1 − ϵ1Þ
X

x1>1

jVx11…1j2 ≤ ϵ1ðε − ϵ1Þ: ð23Þ

We remark that Lemma 1 is used for the proof of
Lemma 3, while only Lemma 2 and Lemma 3 are used in
the proof of Theorem 1.
Proof of Theorem 1.—Combining Lemma 2 and

Lemma 3 we get

ð1 − ϵ1Þϵ1ð1þ ϵ1 − εÞ ≤ ϵ1ðε − ϵ1Þ:

Since ϵ1 > 0 as a consequence of the assumption
HðX1Þ ≠ 0, this is equivalent to

1þ ð1þ ε − ϵ1Þϵ1 ≤ 2ε:

Since the left-hand side of this inequality is larger than 1, it
follows that ε > 1

2
which in turn implies (12) by use of (15)

and the definition of ε. This completes the proof of
Theorem 1. ▪
In case the given state ρ is not pure, we can apply

Theorem 1 to its purification and obtain (see Sec. B of the
Supplemental Material [14] for more details).
Corollary 1.—Let H⃗ be a realizable entropy vector for a

system N ¼ fX1;…; XNg which fulfills

HðN Þ > 0 and HðXiÞ þHðN Þ ¼ HðN nXiÞ

for all i∈ f1;…; Ng. Then the following bound holds:

HðN Þ þ
XN

i¼1

HðXiÞ > 1: ð24Þ

We note that the conditions in the corollary can be
satisfied if N ≥ 3. This result excludes a range of vectors in
ΣN from Σ�

N that satisfy N linear constraints and hence can
be labeled by 2N − N − 1 parameters. See Fig. 2 for a
visualization in case N ¼ 3. In Sec. C of the Supplemental
Material [14] we provide a four-parameter family of
realizable entropy vectors on the boundary of ΣN satisfying
the conditions of the corollary.
Applications.—The entropy concept itself originally

arose from thermodynamical considerations of macro-
scopic systems consisting of many particles, such as gases.
Quantum correlations of such systems can be quantified in
terms of the scaling of the entanglement entropy, that is the
entropy of a subregion A. It has been found for many

systems that this entropy is roughly proportional to the size
of the boundary ∂A and not to the volume, a statement
known as the area law [15]. For topologically ordered
systems it is expected that

HðAÞ ¼ αj∂Aj − γ

up to terms vanishing as the “area” j∂Aj gets large.
Moreover, the constant additive term -γ is expected to be
universal and is dubbed the topological entanglement
entropy. Actually, -γ equals an alternating sum of entropies,
called M, encountered above in (5). As shown in [16,17]
the value of γ in a class of systems is always positive, andM
is thus negative. This is precisely the regime in which we
identified restrictions on entropy vectors and they may
therefore have implications for the attainable values of the
topological entropy. We point out, however, that the
entropy vectors of the particular finite systems calculated
in [16,17] in terms of their total quantum dimension do not
satisfy the conditions of our theorem. Also, as the con-
straints we obtained are not balanced [12], our results have
no direct bearing on the usual situation when a large system
size is considered.
Many functions in quantum information theory are

defined in terms of optimizations of von Neumann entro-
pies [18] or even optimization with entropic constraints
[19]. An example from entanglement theory is the squashed
entanglement [20]

EsqðρABÞ ¼ inf
1

2
ðIðA∶BEÞρ − IðA∶BÞρÞ;

where the minimization is over extensions ρABE of ρAB. The
results of the present work constrain such optimization and

FIG. 2. The solid figure represents the set of permissible values
for ½HðAÞ; HðCÞ; HðABCÞ� satisfying IIIXY ¼ 0 for all X, Y,
given the inequalities (3) and (4) and Corollary 1. We have further
made the projection HðAÞ ¼ HðBÞ to get a three-dimensional
surface. The dashed lines span a part of Σ3 ruled out by
Corollary 1, and O denotes the apex of Σ3. The ray l is the
top edge in the figure.
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it remains to be explored whether they could lead to
simplified computations in specific cases.
Finally, let us consider a cryptographic situation, known

as quantum secret sharing [21–23]: Alice (A) wishes to
distribute information toN − 1 parties (N ≥ 4) (i) purely, in
the sense that the overall state of her and the constituent
systems is pure (ii) secretly, in the sense that every share is
in product with hers (iii) nontrivially, in the sense that
HðAÞ > 0. These are precisely the conditions of Theorem 1
and thus it follows from our Letter that she cannot do so
unless the average share carries a minimum entropy, equal
to 1=N, putting a lower bound on the communication
required.
Conclusion.—We conclude this Letter by summarizing

the new results. Theorem 1 concerns pure states and
establishes, for general values of N ≥ 4, that inside certain
faces of ΣN , defined by requiring one constituent system,
say X1, to have vanishing mutual information with all
others, there is a strictly positive lower bound on the
distance from the apex to any entropy vector corresponding
to a pure state with HðX1Þ ≠ 0.
Corollary 1 concerns arbitrary states for N-partite system

with N ≥ 3. In particular, for the case N ¼ 3, it entails a
positive lower bound on the distance from the apex to any
realizable entropy vector on any given ray within the four-
dimensional face of Σ3 defined by

IIIXY ¼ 0 for all X; Y; and HðABCÞ ≠ 0:

This answers, in particular, a question posed by Winter [24]
concerning the possibility of downscaling certain realizable
entropy vectors. For general values of N ≥ 3, Corollary 1
provides nonhomogeneous bounds (24), which rule out
downscaled versions of realizable entropy vectors—such as
those presented in Supplemental Material [14] Sec. C. It
follows that Σ�

N is not a cone for N ≥ 3. On the other hand,
the closure of Σ�

N is a cone [2], so it likewise follows that Σ�
N

is not closed for N ≥ 3. This confirms a previous statement
from [11] and solves an open problem from [2].
We emphasize that our results apply to the case of

finite dimensional as well as infinite dimensional state
spaces, provided the states in question have well-defined
entropies.
In the applications, we highlighted the potential impact

in macroscopic systems, quantum information theory, and
quantum cryptography—pointing to the importance of a
further investigation of the shape of Σ�

N .
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