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Quantum geometry defines the phase and amplitude distances between quantum states. The phase
distance is characterized by the Berry curvature and thus relates to topological phenomena. The
significance of the full quantum geometry, including the amplitude distance characterized by the quantum
metric, has started to receive attention in the last few years. Various quantum transport and interaction
phenomena have been found to be critically influenced by quantum geometry. For example, quantum
geometry allows counterintuitive flow of supercurrent in a flat band where single electrons are immobile. In
this Essay, I will discuss my view of the important open problems and future applications of this research
topic and will try to inspire the reader to come up with further ideas. At its best, quantum geometry can
open a new chapter in band theory and lead to breakthroughs as transformative as room-temperature
superconductivity. However, first, more experiments directly showing the effect of quantum geometry are
needed. We also have to integrate quantum geometry analysis in our most advanced numerical methods.
Further, the ramifications of quantum geometry should be studied in a wider range, including electric and
electromagnetic responses and interaction phenomena in free- and correlated-electron materials, bosonic
systems, optics, and other fields.
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The concept of quantum geometry.—In quantum phys-
ics, eigenvalues and eigenstates fully describe the physical
behavior of a system. For a long time, emphasis was placed
on the eigenvalues since they give the observable quan-
tities: energies, momenta, spin, and so on. The eigenfunc-
tions give the probabilities of finding the system in a certain
configuration (position, momentum, etc.), often of only
indirect importance, e.g., via calculation of expectation
values and transition rates. Of course, this has dramatically
changed in recent times. A notable example is entangle-
ment, which is an inherently wave function or eigenstate
property and now forms the fundamental resource of
quantum information science and technology. Another
one is topological physics, which deals with structural
properties of the eigenfunctions. Now, it seems that
topological physics was perhaps only one aspect of a
wider and possibly even more influential concept, namely,
quantum geometric physics.
Quantum geometry defines the geometry of the eigen-

state space [1]. As in the classical world, the geometry of a
space determines distances, for example the distance
between two points is different on a plane and on a sphere.

Likewise, the distances between quantum states depend on
the geometry of the eigenstate space, and this is captured by
the quantum geometric tensor (QGT) [2] (or Fubini-Study
metric) BijðkÞ:

BijðkÞ ¼ h∂iukj∂juki − h∂iukjukihukj∂juki; ð1Þ

where ∂i ≡ ∂=ð∂kiÞ with i ¼ x, y and uk is a wave function
parametrized by a quantity k (which could be, for example,
the lattice momentum). Its real part, the quantum metric
ReBijðkÞ≡ gij tells about the orthogonality, i.e., amplitude
distance of quantum states under small changes. The last
term of Eq. (1) is real due to normalization, thus the
imaginary part of the QGT is ImBijðkÞ ¼ −iðh∂iukj∂juki−
h∂jukj∂iukiÞ=2. From this one can see that ImBijðkÞ is the
well-known Berry curvature (defined in vector form as
i∇k × hukj∇kuki), which provides information about
changes of the eigenstate phase (for more information
see [3,4]). As the integral of the Berry curvature gives the
Chern number, the QGT contains information about the
system topology too. These concepts have been long known
[1,2,5]. The idea that they can critically affect physical
properties in interactingmany-body systems is amore recent
development [3,6–8].
Most quantum geometry studies in condensed matter

physics have focused on the geometry of the eigenstates of
a Bloch energy band in a periodic lattice system (solid state,
optical, or other [3,6–10]). Historically, the structure of the
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Bloch energy bands has enabled in a simple way the
classification of matter into insulators, metals, semicon-
ductors, and semimetals [11]. Quantum geometry, on the
other hand, gives information about the structure of the
Bloch functions in a band. It only becomes nontrivial if
the band consists of contributions of different orbitals (see
Fig. 1), i.e., when the multiband (multiorbital) nature of the
problem is important (“orbital” refers here to a general
degree of freedom, e.g., atomic orbital, spin, or light
polarization). Since the Wannier functions of a band are
given by the Bloch functions via a Fourier transformation,
it is not difficult to imagine that quantum geometry of the
band actually has a relation to the Wannier functions too.
Moreover, this is an important one: quantum geometry
determines the localization properties of the Wannier
functions. Overlaps of the Wannier functions of nearby
lattice sites affect nearly all transport and interaction
phenomena, so it is no wonder that quantum geometry
is emerging as a fundamental and powerful concept for
understanding solid state and other periodic systems.
Relevance of quantum geometry to physical

phenomena.—It has been theoretically predicted that quan-
tum geometry governs a variety of physical phenomena. In

the case of free (or more precisely, noncorrelated) electrons
in band insulators and semimetals, quantum geometry
appears as an important ingredient of the Hall effect, shift
currents, circular photogalvanic effect, and resonant optical
responses, just to name a few examples. Review articles on
these topics are rare [13] (a pressing to-do task for the
experts in the field), and I choose not to attempt to give
credit to the large amount of original and seminal theory
work in this and other areas mentioned in this Essay
(a few references can be found in [3,14–16]). Concerning
(strongly) correlated electron systems, there are, so far,
fewer examples of phenomena essentially governed by
quantum geometry: the most prominent ones are fractional
Chern insulators [6–8] and flat-band superconductivity
[3,4,9]. In the latter case, quantum geometry beautifully
solves an outstanding puzzle: how could there be super-
conductivity in a flat band, if electrons are, due to their flat
dispersion, localized? It turns out that quantum geometry,
which guarantees sufficient overlap of Wannier functions,
enables this [10], with potentially remarkable consequences
since now the diverging density of states of a flat band can
be utilized to achieve higher critical temperatures. Here it is
good to reflect on the fact that the single-particle quantum
metric gives essential information about an interacting,
correlated many-body state. This boils down to the role of
the Wannier functions in our theoretical description of
interacting phases.
In flat-band superconductivity as well as in many

other contexts, the role of quantum geometry is nicely
illustrated by the current operator of a multiband system (m,
n are band indices and i ¼ x, y, z): hmjjijni ¼ δmn∂ϵn=∂kiþ
ðϵm − ϵnÞh∂m=∂kijni, where k is the momentum and ϵðkÞ
gives the dispersion. The first term is the conventional
current arising from the group velocity, and the latter leads to
the quantum geometric effects. From this formula it is
obvious that quantum geometric effects are of multiband
nature (since the latter term is nonzero only for different
bands,m ≠ n) and that they dominate in a (nearly) flat band
[since then the intraband terms (m ¼ n) vanish as
∂ϵn=∂ki ∼ 0]. However, quantum geometry can be qualita-
tively and quantitatively significant also for bands with a
considerable kinetic energy. Given this realization, what
should we do to best unveil the potential of quantum
geometric physics?
Experiments: Present and future.—First and foremost,

since physics is an experimental science, there should be
many more experimental demonstrations of the signifi-
cance of the quantum metric part of quantum geometry
to physical phenomena (for the Berry curvature and
Chern number part, there is already a remarkable amount
of experimental work, for example, with topological
insulators).
Naturally, we should try to make the characterization of

the full QGTa routine measurement available for any given
physical system. As we refer here to the quantum geometry

FIG. 1. (a) Atoms in materials may form a lattice that the
electrons “feel.” Each unit cell of the lattice can have several
orbitals, labeled α and β in our example, which only has two. The
orbital states jαi and jβi are orthogonal and can be illustrated by
the Bloch sphere, (b), middle. The states of the electrons in a band
may involve one orbital only, indicated by a single color in (b),
left. The distance between two states when the change in the
lattice momentum Δk is infinitesimally small then vanishes
because the orbital state remains the same. The quantum
geometry is trivial in this case and the quantum metric g ¼ 0.
In the nontrivial case (b), right, the electron state in a band can be
a superposition of two orbitals (“mixed” color). Then, upon a
change in k that changes this superposition, the new state will
have a finite quantum distance from the original one due to the
orthogonality of the orbital states; the quantum metric is nonzero.
For a simple model example, see [12].
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of the noninteracting (or weakly interacting, noncorrelated)
bands, such measurements are relevant only in cases where
one can effectively turn the interactions or correlations off by
some means, for example, by temperature, magnetic or
electric field, doping, density, absence of nonlinearmedium,
and so forth. Various high-frequency responses as well as
tomographic approaches can be used for measuring the
QGT, and experimental observations of the full QGTalready
exist for qubits in diamonds [17], superconducting circuits
[18], ultracold atom [19] and polariton systems [20], as
well as plasmonic lattices [12]. For example, the QGT
related to light polarization can be obtained by a tomo-
graphic approach where six different polarizations are
measured at each k [12,20]. However, more methods,
tailored for different physical contexts, for example, various
new 2D quantum materials, are needed.
In the long run, what really matters is that the quantum

geometry of the band can affect and control other physical
phenomena. There are already a few intriguing directions of
experimental work on this. In polariton systems, it has been
shown that quantum metric affects the anomalous Hall drift
[20]. The nonlinear Hall effect induced via quantum metric
by interfacing even-layered MnBi2Te4 with black phos-
phorus has been observed recently [21]. Similar experi-
ments on other predicted quantum geometric transport
phenomena in noncorrelated systems are likely to appear
soon, considering the vast possibilities offered by layered
and other 2D materials. For maximizing the chance of
future applications, it is important that such studies are
conducted for bulk materials as well.
Concerning correlated electron systems, the recent

experimental advances on fractional Chern insulators in
twisted graphene andMoTe2 [22–24] now open the way for
one to study quantum geometry effects in these materials in
detail, for example, the role of Berry curvature distribution
in the Brillouin zone. The superfluid weight (stiffness) in
flat bands has been predicted to be provided by the
Brillouin-zone-integrated quantum metric [10]; recently,
the superfluid weight was estimated via the critical current
and critical field measurements of twisted bilayer graphene,
indicating that quantum geometry plays a major role [25].
Starting from these promising developments, experi-

ments in which the role of quantum geometry is precisely
and unambiguously defined are needed. In the case of
complex correlated systems, this requires deep theoretical
analysis also. The conventional and quantum geometric
contributions typically combine, so distinguishing them
requires care. Fortunately, they often scale differently with
system parameters such as density, interactions, and tem-
perature, as one can anticipate, e.g., from the very different
types of contributions to the current operator: hmjjijni ¼
δmn∂ϵn=∂ki þ ðϵm − ϵnÞh∂m=∂kijni.
Once a few smoking-gun experiments on quantum

geometry effects have been achieved, the focus should
swiftly shift from showing that “quantum geometry is

there” to how can we utilize this concept to better under-
stand nature and, eventually, to create new technologies.
Updating computational methods.—A large amount of

condensed matter and materials research is based on widely
used computational methods, for example, density func-
tional theory, quantum Monte Carlo technique, and
dynamical mean-field theory. To proceed on the quantum
geometry road, we should implement the extraction—and
smart visualization—of quantum geometric concepts as a
standard functionality of these tools. This is easier said than
done. First, it is important to understandwhich quantities are
the most relevant to extract from the numerically obtained
data: the quantummetric andBerry curvature everywhere on
the Brillouin zone, or just Brillouin-zone-integrated quan-
tities? Or perhaps just directly some information about the
Wannier functions? How should we obtain that information
accurately and computationally efficiently, keeping in mind
that these numerical methods inevitably contain some
approximations or limitations? In (strongly) interacting
systems, quantum geometric transport and interactions
emerge when projecting interactions defined with a large
set of bands, that is, the full system, down to a low energy
band. Such downfolding or projection requires extreme care.
Despite challenges, our goal should be that the most
powerful numerical methods of condensed matter physics
will provide the essentials of the quantum geometry of the
bands, properly visualized, as easily as they give the
energies. Once this becomes a routine, we will start seeing
things from the perspective of quantum geometry, like we
now do from the band structure’s, and this will be a source of
understanding and discovery.
Perhaps algorithms will see even more. Machine learn-

ing is becoming increasingly important in materials dis-
covery [26], and incorporating quantum geometric
quantities in search of new materials is worth considering.
For instance, one might hint at the algorithm that not only a
flat band is good for high critical temperature super-
conductivity but also a suitable type of quantum geometry.
However, I have heard from experts that the algorithms
usually develop best “on their own.” Yet, we should try
finding out if quantum geometric concepts will help with
machine learning for materials, because potential discov-
eries on that front could be thrilling.
The annoying necessity of nitpicking.—It is said that the

devil is in the details, but I would rather say that: the devil is
in the supplementary. The quantum geometric tensor is
gauge invariant; thus it is measurable. However, it is basis
dependent. To clarify this, let us consider a lattice tight-
binding model with multiple orbitals, somewhat like the
situation shown in Fig. 1. If one alters the physical positions
of the orbitals, while keeping everything else such as
hoppings fixed (a bit unphysical, but in a model system
one can do it), many macroscopic quantities and responses
remain the same, including the superfluid weight. However,
the quantum metric and the Berry curvature change! The
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resulting discrepancy for the connection of the superfluid
weight and the quantum metric in flat band superconduc-
tivity was missed in a large body of literature, until in
Ref. [15] it was found out that one should use the minimal
quantum metric, a basis-independent quantity defined
through symmetry. The devil was indeed in the supplemen-
tary information of the original work that discovered
quantum geometric superconductivity [10], where the
superconducting order parameters were assumed real in
the presence of the supercurrent, which can be safely done in
suitably symmetric systems, but not in general. Self-con-
sistent evaluation of the order parameters in the presence of
the current is the key; now it has been shown that theminimal
quantum metric result [15] can also be obtained from a
random phase approximation analysis of the superfluid
response [27]. The basis-dependence issue should be kept
in mind in future theoretical work. Further, much of the
quantum geometry in condensed matter literature, also
beyond flat-band superconductivity, should be revisited in
this sense. In some cases the physical observable in question
may indeed depend on the basis, in others not, and then one
cannot use quantum geometry in a naiveway. Moreover, the
intuitive understanding of the minimal quantum metric
should be worked out, starting perhaps from the finding
that it emerges in a natural way from the two-body problem
in a flat band [15]. I wonder whether it would be possible to
formulate a basis-independent description of some physi-
cally relevant essential features of quantum geometry, in a
similar spirit as Provost and Vallee introduced the QGTas a
gauge-invariant way of measuring quantum distances [2].
Another dangerous pitfall is related to the fact that

quantum geometry effects are the most prominent in flat
bands, and thus while hunting them, one frequently enters
the land of the missing Fermi surface. It is amazing how
much of the condensed matter physics theory describing
quantum states and their responses or excitations is done
utilizing, explicitly or implicitly, the existence of the Fermi
surface. It is frequently assumed that relevant phenomena
happen only around the Fermi surface, low momentum
states are Pauli blocked, and nasty divergences at the Fermi
surface are negligible under integrals over the whole
momentum space; see Ref. [14] for inspiring examples.
Yet, I believe it will be possible to rework most of these
treatments to find predictions for the flat band case—and
the physics will be excitingly different! A nice example is
the flat-band version of the Cooper problem [28], where the
effect of the two-body interaction is now to give the Cooper
pair a finite effective mass and mobility instead of desta-
bilizing the Fermi sea.
Widening quantum geometry.—Quantum geometry is a

broader concept than the single-particle (noninteracting)
QGT that I have been discussing. First, the quantum
distance itself (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − jhϕjψij2
p

, where ϕ and ψ are two
quantum states), instead of its infinitesimal version, the
quantum metric, can be relevant as has been already shown

in the case of flat-band Bose-Einstein condensate excita-
tions. Moreover, work on other quantum geometric quan-
tities, such as Christoffer symbols and Riemann curvature
tensors, to describe physical phenomena has already
started [16] and should be continued.
In nearly all condensed-matter related quantum geom-

etry work, the QGT has been parametrized by the Bloch
(lattice) momentum. One can, however, define also a “local
quantum metric” [28] characterizing distances of wave
functions in real space (by the way, this one is basis
independent); interestingly, this quantity turned out to be
relevant for the flat-band Cooper problem [28] and, quite
surprisingly, for the quantum geometric effects of electron-
phonon coupling [29]. Yet, such a local quantum metric is
all but unexplored, and perhaps there are more modified
versions of the QGT (including time-dependent ones),
which have great potential in explaining and characterizing
physical behavior.
The positive definiteness of the QGT allows us to derive

fundamental bounds for quantities that depend on quantum
geometry, for example, the superfluid weight in a flat band
is lower bounded by the Chern number [10]. For other
topological invariants see Ref. [3]. There are probably
many more connections to be found between physical
observables and band structure and topological invariants
(known and new ones), in particular when utilizing new
concepts such as the minimal quantum metric [15] and
going beyond the highly symmetric (with respect to time
reversal, rotation, etc.) cases for which the present bounds
have been derived.
One can also define the QGT for an interacting many-

body state: the so-called many-body QGT [5]. To defend
the single-particle QGT, I must immediately remind the
reader that its ability to provide important information
about a (correlated) many-body system is powerful pre-
cisely because we can calculate it without major difficulties
with our currently available methods. However, we should
think about the future: maybe quantum computers will
become available for fully quantum simulations, at least for
intermediate size systems. Then the calculation of the
many-body QGT will be feasible beyond few-particle
systems. Researchers who currently run problems on the
existing quantum computers may explore whether and how
the many-body QGT influences physical phenomena (in
particular, emergent phenomena arising from strong corre-
lations), while others can study the role of the many-body
quantum metric at a general level and in systems tractable
by exact diagonalization, density-matrix renormalization-
group, tensor networks, and similar methods.
One very important research direction is to develop

descriptions of quantum geometry effects for the case of
touching bands, for example a Dirac cone touching a flat
band—not an untypical scenario. Namely, the quantum
metric diverges at band touchings and Berry curvature is ill
defined too. Yet it has been numerically shown that band
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touchings enhance the critical temperature of flat-band
superconductivity [3,15]. Awhole new theory framework is
needed to capture the physics-relevant quantum geometry
aspects even in cases where the standard concepts cannot
be used. Inspiration for this search can be found from the
effective mass tensor of a two-body bound state in a system
of multiple nonisolated bands where the quantum geo-
metric contributions and band dispersions intertwine [30].
Finally, widening means also that we condensed-matter–

quantum-geometry enthusiasts should make friends with
the communities that have been studying quantum geom-
etry for a long time—high energy physics, cosmology, and
quantum information—and dive into their literature [31].
The danger of drowning there is of course considerable, but
the embarrassment of reinventing too many wheels is an
even more daunting prospect. Those communities might
also learn something from us, or at least get amazed by how
nature, once again, beautifully follows abstract mathemati-
cal concepts [32].
Exploring physical phenomena with the quantum

geometry perspective.—We should search for more con-
texts where quantum geometry is relevant. In the begin-
ning, it is fine enough to just identify that quantum
geometry plays a role in some physical phenomena. In
the long run, we should develop an understanding and
become intuitive about the typical ways quantum geometry
works, and then utilize that information to design the
desired systems and behavior, i.e., to take the first steps
toward engineering.
As described above, it is already well understood that

nontrivial quantum geometry can facilitate transport and
prominently so in (almost) flat bands where kinetic energy
vanishes. Quantum geometry effects on various electronic
transport and optical responses have been identified, but
there is plenty of room for more work, in particular, for
cases where the electrons are strongly interacting.
Concerning correlated ground states of matter, one can
go beyond fractional Chern insulators and flat-band super-
conductors where quantum geometry effects have already
been predicted. One obvious area is magnetism: many of
the flat-band superconductivity results can be mapped to
magnetism in particle-hole symmetric systems. A big
breakthrough would be to understand whether and how
quantum geometry, in general, affects the competition
between various interacting and correlated phases: It would
be fantastic if we could conclude or even guess based on
quantum geometry whether a charge density wave, mag-
netic phase, superconductor, or something else will win the
game. Most examples so far are about phases of matter
enhanced by quantum geometry, but it could also be
detrimental for some phases, e.g., via enhancing fluctua-
tions. It is intriguing and somewhat surprising that quantum
geometry was recently found to significantly affect elec-
tron-phonon coupling, even in dispersive-band systems
such as graphene and MgB2 [29]. Inspired by such results,

quantum geometry effects in various microscopic interac-
tion mechanisms is an important topic for future study and
currently almost unexplored. Concerning flat-band super-
conductivity, the most significant future direction is to
increase the critical temperature of superconductivity. In a
flat band, the critical temperature is linearly proportional to
the interaction, not exponentially suppressed, and quantum
geometry provides the supercurrent. However, the critical
temperature depends on quantum geometry, and more work
is needed to understand how so that we can maximize the
temperature. Thereafter, we need to find materials with
suitable flat bands and quantum geometries.
Quantum geometry is likely to influence bosonic sys-

tems quite differently from fermionic ones, at least in the
weakly interacting limit. This is due to the tendency of
bosons to occupy a single quantumstate at low temperatures.
Since quantum geometry is about distances between states,
one might wonder whether it matters at all if only one state
is populated. Quantum geometry, however, does control
bosonic excitations in an interacting system and dominantly
so if the band is flat. There is a vast amount of work to be
done on the role of quantum geometry in bosonic systems,
even in the weakly interacting case, since flat-band systems
with suitable quantum geometry offer unique opportunities
to study beyond mean-field physics (for examples,
see [3,4]). And the strongly interacting limit is almost
untouched. It is urgent that we find more contexts in which
bosonic quantum geometry effects can be studied through
experiments, to get a firm basis for this emerging topic.
The QGT, despite the word quantum in its name, also

describes the distances between solutions of classical wave
equations. Therefore, quantum geometry studies are rel-
evant in the domain of classical optics, acoustics, and any
fields dealing with waves; indeed work has already begun,
see e.g. [12] and references therein. (To be precise, I should
replace quantum geometry by eigenmode geometry, but
nitpicking is not a necessity here.) With light, the “orbital”
degree of freedom can be the polarization. Thus quantum
geometry can be used for understanding and designing
polarization properties of light. On the other hand, photonic
lattice structures with multiple orbitals in the unit cell can
be fabricated, providing another route for quantum geom-
etry studies. I expect the most interesting and useful results
to come from the combination of optical nonlinearities and
quantum geometry.
I also believe that classical, in particular optical, systems

are the best ones to enter the world of non-Hermitian
quantum (or eigenmode) geometry. The QGT for the non-
Hermitian case has been defined, but there are various
possibilities for other definitions based on different combi-
nations of the left and right eigenstates [12,33], and
experiments are needed to guide the way. Experimental
studies of non-Hermitian interacting quantum systems may
be challenging while the theory is not fully clear. Therefore,
classical optical systems that can be microscopically
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simulated with great accuracy and studied experimentally
with high precision may provide the best early progress for
non-Hermitian quantum geometric physics.
Transformative impact of quantum geometric physics.—

Last but not least, we should use this new concept to find
something truly significant for humankind. Most probably
Felix Bloch did not understand what would follow from
pointing out that the lattice momentum is a good quantum
number and that one could use certain eigenfunctions, later
named Bloch functions. He likely had no idea that, based
on these concepts, one day the band theory of solids would
be formulated and from that would stem the understanding
that led to the wide usage of semiconductors. Bardeen,
Brattain, Shockley, and their Bell Labs co-workers would
not have been able to—at least in my humble view—
develop the transistor without the insight and conceptual
tool that band theory gives and without the work that had
been done with band theory before them. And without the
transistor, our world would not be the same. Band theory
made a difference. It remains to be seen whether quantum
geometry, including both quantum metric and the Berry
curvature and thus topological physics, will play an equally
large role in our world. What is clear is that the world needs
out-of-the-box discoveries: world energy production and

consumption are literally burning questions, as are scarcity
of materials and several other gut-wrenching problems.
Innovations as big as the transistor are much more urgently
needed now than at the time transistor was invented.
Therefore, we should try all possibilities. Perhaps the most
notable prospect from quantum geometry is to guide the
way to room temperature superconductivity. The interplay
of light, electronic transport, and quantum geometry
intrigues me as well, because photovoltaics is another area
where major technological advances can have world-
changing impact. There may be other equally important
goals for which quantum geometry can provide guidance,
but my imagination stops here. I give the floor to the reader
who probably has a different background and can thus
come up with different ideas.
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