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Proteins often regulate their activities via allostery—or action at a distance—in which the binding of a
ligand at one binding site influences the affinity for another ligand at a distal site. Although less studied
than in proteins, allosteric effects have been observed in experiments with DNA as well. In these
experiments two or more proteins bind at distinct DNA sites and interact indirectly with each other, via a
mechanism mediated by the linker DNA molecule. We develop a mechanical model of DNA/protein
interactions which predicts three distinct mechanisms of allostery. Two of these involve an enthalpy-
mediated allostery, while a third mechanism is entropy driven. We analyze experiments of DNA allostery
and highlight the distinctive signatures allowing one to identify which of the proposed mechanisms best fits
the data.

DOI: 10.1103/PhysRevLett.131.238402

Introduction.—The term “allostery” indicates an action
at a distance in biological macromolecules where the
binding of a ligand at one site modifies the binding of
another ligand at a distinct site. Many proteins regulate
their activities via allostery [1], through mechanisms that
are not fully understood and presently debated, see e.g., [2].
Although hitherto most of the focus has been on proteins,
allosteric effects have been observed in DNA as well [3,4]
and discussed in models and simulations [5–7]. In DNA
allostery two or more proteins binding at distinct sites
interact with each other through some signal carried by the
linker DNA, see Fig. 1(a). Experiments show that the
interaction is weakly dependent on the DNA sequence
[3,4], suggesting that allostery may be described by a
homogenous DNA model. The interaction is strongly
attenuated if one of the two strands is cut (DNA nicking),
which shows that allostery requires an intact DNA mol-
ecule. This and other experimental evidences [3,4] show
that the interaction is transmitted through DNA, and not via
direct (electrostatic) or solvent-mediated effects. A model
of force-induced allostery was discussed in [8]. However,
this mechanism does not apply to experiments in which
DNA is not under tension [3,4].
In all generality, the total free energy for the system

consisting of DNA and two bound proteins, separated by a
linker sequence of m base pairs, is

Fab ¼ F0 þ ΔFa þ ΔFb þ ΔΔFintðmÞ ð1Þ

where F0 is the bulk contribution from DNA in absence of
bound proteins, ΔFa and ΔFb are the excess free energies
when only one of the two proteins, either “a” or “b”, is
bound. The interaction term, ΔΔFintðmÞ, is the excess free

energy when both proteins are bound which vanishes as
m → ∞. IfΔΔFint < 0 the simultaneous binding of the two
proteins leads to a net decrease of the total free energy
(cooperative binding). If ΔΔFint > 0, the simultaneous
binding is destabilized. We introduce a model which
predicts three distinct mechanisms of allostery, correspond-
ing to different forms of ΔΔFint. We introduce collective
variables Xn at each base pair position 0 ≤ n < N, which
are local reaction coordinates associated to DNA-protein
binding. We define l̄≡ hXni, the equilibrium value, and

FIG. 1. (a) DNA-mediated interaction for two bound proteins
separated by a linker molecule ofm base pairs. (b) Model of DNA
allostery. The DNA substrate (yellow) is described as a set of
variables Xn ≡ un þ l̄ defined at each base-pair site, with hXni ¼
l̄ the equilibrium value. These variables are characterized by a
local stiffness (K0) and distal couplings (K1; K2;…), with energy
given by (2). Upon binding, the protein (orange blob) modifies
the local mechanical properties of the DNA substrate. The distal
couplings carry the signal to distinct sites. The schematic plot in
(b) shows a protein interacting with a single DNA site. The more
realistic case of proteins binding to several DNA sites is also
considered.
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un ≡ Xn − l̄. At base-pair level, DNA deformations are
described by several coarse-grained coordinates like the 12
canonical ones (twist, roll, tilt, rise, …) of the rigid base
model [9]. In our model un could be one of these
coordinates, a combination thereof, or any other local
deformation parameter. Experimental data, discussed fur-
ther, put constraints on the properties of un which gives
insights on candidate allostery-carrying variables. In the un
the energy of free DNA is

H0 ¼
1

2

XN−1

n¼0

�
K0u2n þ

XL

p¼1

Kpðununþp þ unun−pÞ
�

ð2Þ

which is quadratic with local stiffness K0 and distal
couplings Kpununþp [Fig. 1(b)] here assumed to extend
to a finite range L. Distal couplings naturally arise from the
collective nature of un and are indeed observed in simu-
lations [10–14]. They typically extend to a few flanking
nucleotides [truncated at a distance L in (2)] and the
strength and decay of the interactions depend on the coarse-
grained variable considered [13]. Distal couplings are
essential to generate allostery. The model (2) is coarse-
grained with one degree of freedom per DNA site and it can
be solved analytically. Using periodic boundary conditions
(uN ≡ u0) we write (2) as

H0 ¼
1

2N

X

q

K̃qjUqj2 ð3Þ

where we introduced the discrete Fourier transforms

Uq ¼
XN−1

n¼0

e−2πinq=Nun; K̃q ¼
XL

n¼−L
Kn cos

�
2πnq
N

�
ð4Þ

with q an integer, K−p ¼ Kp, and −N=2 < q < N=2 [15].
In absence of distal couplings (Kp ¼ 0 for p ≥ 1) the q
stiffness K̃q ¼ K0 is constant, thus a q dependence of K̃q

reflects the existence of couplings between distal sites.
Note that the couplings Kp can take any value as long as
K̃q > 0 for real q (stability condition).
We consider first proteins interacting with a single DNA

site. An unbound protein is thus described by a single
collective variable S, with average hSi ¼ s̄ and energy
Hp ¼ εðS − s̄Þ2. The binding to DNA (at site n ¼ 0) forces
the corresponding collective variables to assume the same
value S ¼ X0 ¼ l̄þ u0 so that the total energy of DNA and
protein (H0 þHp) takes the form

H ¼ H0 þ ε½u20 þ 2ðl̄ − s̄Þu0 þ ðl̄ − s̄Þ2�; ð5Þ

omitting a constant binding energy which does not influ-
ence ΔΔFint. Equation (5) shows that protein binding
introduces perturbation “fields” proportional to u0 and

u20. If the equilibrium value of the collective coordinates
of DNA and protein coincide (s̄ ¼ l̄), the linear term
vanishes and only the term proportional to u20 “survives”
in (5). Conversely, if jl̄ − s̄j is large one can neglect the
quadratic term contribution [16]. In the following we
computeΔΔFint for three different cases where the proteins
induce a linear or a quadratic field.
A quantity of central interest is the propagator

Sm ≡ 1

N

X

q

e2πimq=N

K̃q
¼ βhu0umi0; ð6Þ

where β ¼ 1=kBT is the inverse temperature and h:i0
indicates a thermal average with respect of H0.
Equation (6) follows from the equipartition theorem

βhUqUpi0 ¼ NK̃−1
q δq;−p: ð7Þ

Transforming the sum in (6) into an integral (N → ∞ limit),
one obtains the asymptotic behavior of Sm from the leading
pole, i.e., the solution of K̃q ¼ 0 with the smallest
imaginary part. This equation cannot have solutions for
real q as stability requires K̃q > 0. In the most general case
the leading pole has real and imaginary parts. Since K̃q is
real for real q and symmetric in �q [see (4)] there are at
least four poles, one of which is

2πqE
N

≡ ϕþ i
ξE

ð8Þ

and the others are −qE, q�E and −q�E, where � denotes
complex conjugation. The asymptotic behavior is governed
by qE

Sm ∼m≫1Γ cosðmϕþ ϕ0Þe−m=ξE ð9Þ

with ϕ0 a phase shift and Γ a scale factor [17].
Enthalpic allostery.—We consider first

HE ¼ H0 − hðu0 þ umÞ ð10Þ

with h ¼ −2εðl̄ − s̄Þ, following (5). We find [17]

ΔΔFE
int ¼ −h2Sm ð11Þ

which, being temperature independent, describes an inter-
action of enthalpic origin [30]. The fields in 0 and m shift
the equilibrium values of u0 and um and the distal couplings
K1; K2;… propagate this perturbation to flanking sites,
leading to huni ≠ 0. Asymptotically the interaction decays
via damped oscillations, see (9). We refer to ξE in (9) as the
enthalpic allosteric length. The interaction stabilizes or
destabilizes the simultaneous protein binding depending on
their distance m, see Fig. 2(a). The calculation can be
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generalized to protein-DNA couplings involving more than
one site, i.e., of the type

Pna−1
k¼0 hkuk þ

Pnaþnb−2
l¼na−1 hmþlumþl

where na (nb) are the number of sites to which first (second)
protein binds and m is the number of base pairs separating
the nearest edges of the two proteins. The asymptotic decay
remains of the form (9) which is universal [17].
Entropic allostery.—We consider next

HS ¼ H0 þ ε
�
u20 þ u2m

�
: ð12Þ

Differently from the enthalpic case, here huni ¼ 0 for all
sites. We find [17]

ΔΔFS
int ¼

kBT
2

log

�
1 −

�
2εSm

1þ 2εS0

�
2
�
: ð13Þ

The interaction is of entropic origin ΔΔFS
int ¼−TΔΔS≤ 0,

implying a net increase in entropy when both proteins are
bound (cooperative binding). This can be understood as
follows. The local stiffening to K0 þ 2ε at sites 0 and m
induces an entropy reduction in two regions surrounding
the two perturbed sites. When m is sufficiently small, the
two regions overlap which leads to a net entropy gain,
hence ΔΔS > 0. This is reminiscent of entropic attractions
observed in soft condensed matter systems, such as
polymer-colloid mixtures [31]. In the limit m ≫ 1,
ΔΔFS

int vanishes as S2m. This implies [Eq. (9)] a decay
length which is half of the enthalpic allosteric length
ξS ¼ 1

2
ξE, and an oscillating prefactor proportional to

cos2ðmϕþ ϕ0Þ, as shown in Fig. 2(b), red solid line.
We extended the analysis of ΔΔFS

int for protein-DNA

contacts at more than one site. We consider first
εðu20 þ u21 þ u2mþ1Þ, which can be solved analytically
([17], Eq. (S43)) shown as dashed line in Fig. 2(b).
Unlike (13), this extended binding case contains terms
proportional to S2m, S2mþ1, and SmSmþ1, each oscillating but
with different phases. Figure 2(b) (dotted) shows ΔΔFS

int

for an interaction term εðP2
l¼0 u

2
l þ

Pmþ2
k¼m u2kÞ in which

each protein couples to a block of 3u’s. There is in this case
a very weak modulation of the exponential decay.
Summarizing, the asymptotic behavior for generic quad-
ratic interactions is

ΔΔFS
int ∼ fðmÞe−2m=ξE ð14Þ

with a nonuniversal prefactor fðmÞ ≤ 0, which depends on
details of the protein-DNA bindings (unlike the universal
behavior of the enthalpic case).
Mixed allostery.—Finally, we consider the mixed case

HM ¼ H0 − hu0 þ εu2m ð15Þ

for which we find [17]

ΔΔFM
int ¼

εh2S2m
1þ 2εS0

ð16Þ

which is positive and thus a destabilizing interaction term.
It is temperature independent and thus of enthalpic nature.
The term −hu0 produces a huni ≠ 0, which contributes to
the enthalpic part, but we find no entropy change in this
model. As ΔΔFM

int depends on S2m the asymptotic is very
similar to the entropic case, with decay length ξM ¼ 1

2
ξE

and oscillations proportional to cos2ðmϕþ ϕ0Þ. As in the
entropic case, interactions to more than one site lead to a
decay of the type (14), with fðmÞ ≥ 0. We note that (11)
and (13) [but not (16)] were also derived in a study of
interactions of point defects in fluctuating membranes [32].
Their applicability is general and not limited to a one-
dimensional chain.
Experiments.—In principle, one could distinguish the

three scenarios in experiments from the sign of ΔΔFint
(Fig. 2). Kim et al. analyzed the binding of several different
pairs of proteins on DNA [3]. The binding free energy
showed a decaying oscillating behavior with alternating
sign which is consistent with an enthalpic allostery (10), in
agreement with the analysis performed by other authors
[3,5,6,33]. A fit to (10) with the asymtpotic expression for
Sm (9) is shown in Fig. 3(a). A different system was
analyzed by Rosenblum et al. [4] who found DNA-
mediated allostery in the binding of bacterial transcription
factors ComK. The experiments showed a cooperative
binding (ΔΔFint < 0) for varying spacer lengths, see
Fig. 3(b). The negative ΔΔFint indicates an allostery of
(predominantly) entropic type. The data are fitted (dashed
line) against a model containing both linear and quadratic

FIG. 2. Plots of ΔΔFint vs linker DNA length m for the three
different mechanisms of DNA-mediated allostery proposed:
(a) enthalpic, (b) entropic, and (c) mixed. An angular frequency
ϕ ¼ 2π=10.5, corresponding to the periodicity of the DNA
double helix and ξE ¼ 15 bp were used. These parameters match
those observed in experiments [see Fig. 3]. In the case (a) the
interaction is stabilizing/destabilizing depending on the values of
m and the asymptotic oscillating behavior is universal, i.e., also
valid for interactions involving na, nb sites for protein a and b,
respectively. In the cases (b) and (c) the interaction is always
stabilizing and destabilizing, respectively. In (b) and (c) the
asymptotic decay is nonuniversal, being dependent on the
number of interacting sites na;b per protein.
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terms, using a Monte Carlo fitting procedure [17]. These
fields act on several sites reflecting the extended contact
regions of the ComK-DNA interaction. The oscillating
component is due to the enthalpic part, which, as seen
above, has a universal oscillatory decaying behavior. In the
fit the same value of ϕ ¼ 2π=10.5 as Fig. 3(a) was used.
Instead for the correlation length we used ξE ¼ 22 bp,
larger than the value used in (a), possibly indicating that
allosteric coupling is carried over by different collective
variables in the two cases. We note that the ComK have
much larger jΔΔFintj than the data shown in Fig. 3(a). It is
possible that to quantitatively describe the ComK data one
would need to go beyond linear elasticity (anharmonic
effects) or to more complex multimodal models [34].
However, the harmonic model with linear and quadratic
terms spanning several sites generates a ΔΔFint consistent
with experimental data.
Simulations.—So far we have assumed a model with

distal couplings generating allosteric interactions, using a
generic un. In principle un could be one of the several DNA
local deformation modes used in the rigid base model [9],
or a combination thereof. However, experiments indicate
that allosteric interactions decay via damped oscillations,
which puts some constraints on un, as several variables do
not have this property. For instance, we can exclude pure
bending or twist modes as candidates for un, as the stiffness
K̃q for these coordinates does not produce oscillations with
the desired periodicity [17]. Prior work suggested the DNA
major groove width as mediating allosteric interactions [3].
However, extensive 1 μs all-atom simulations of a 33-bp
sequence showed no signature of periodicity in the groove
width correlations [33]. We have performed simulations

using two different 44-bp sequences for 100 ns, with major
groove width calculated from the algorithm Curvesþ [35]
using the setup discussed in [13]. Our results for the
normalized propagator Sm=S0 ¼ hu0umi0=hu20i0 (with un
the deviation of the major groove width from the equilib-
rium value) are given in Fig. 4(b) and are in close agree-
ment with those reported in [33]. To extract parameters
from simulations we have calculated the q stiffness K̃q

from the equipartition relation (7), as recently done for
twist and bending deformations [13,36]. A minimal model
with just four poles �qE, �q�E (8) gives

K̃q ¼ Aðq2 − q2EÞðq2 − q�2E Þ ¼ Aðq4 − μq2 þ λ2Þ ð17Þ

with A a scale factor, μ ¼ q2E þ q�2E , and λ ¼ jqEj2. We note
that (17) is not of the form (4), but should be interpreted as
the continuum long wavelength limit (q → 0) of model (2).
Figure 4(c) shows K̃q as obtained from simulation data
averaged over two sequences (red circles). The double-well
shaped curve is fitted, for small q, to (17) giving ϕ ¼ 0.9
and ξE ¼ 1.6 (solid line in the inset of Fig. 4). The former
parameter is close to the double helix periodicity
ϕ ¼ 2π=10.5 ≈ 0.6, while the latter appears to be quite
small as compared to experimental data which predict
ξE ≈ 15 bp. We show on the same inset a plot of Eq. (17)
with the latter values for ϕ and ξE. We conclude that
simulations of the major-groove width qualitatively support
the distal couplings model (2), but a quantitative matching
remains an open challenge, as pointed out earlier [7,33].
See [17] for an extended discussion on possible origins of
these discrepancies.

FIG. 3. (a) Symbols: experimental data of interaction free
energies for BamHI-GRDBD [3]. Oscillating sign in ΔΔFint
indicates an enthalpic type of allostery. Dashed line: fit to the
asymtptotic expression (9) (ϕ ¼ 2π=10.5, ξE ¼ 15 bp). (b) Sym-
bols: experimental data for ΔΔFint for the ComK system [4]. The
negative sign indicates an allosteric interaction which is of
predominant entropic. Dashed line: full numerical solution of
ΔΔFintðmÞ (ϕ ¼ 2π=10.5, ξE ¼ 22 bp) for a global allostery
model with extended perturbations [17]. As ΔΔFint does not
seem to converge to zero for large m, we have added an
asymptotic nonzero offset (dotted line).

FIG. 4. (a) Schematic representation of the major groove width
of DNA, for which the Curvesþ [35] definition is used.
(b) Normalized correlation function of the major groove width
as obtained from all-atom simulations obtained using the
Curvesþ software [35]. (c) Plot of the momentum-space stiffness
for the major groove width obtained from all-atom data. The inset
coplots K̃q for the minimal model [Eq. (17)] for two sets of
parameters. The solid line is a direct fit of the stiffness data. The
dashed line uses ϕ and ξE from a fit of the experimental ΔΔFint
data. The error bars in (b) and (c) indicate the standard deviation
calculated over 21 time windows of 10 ns.
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Conclusions.—We have studied a coarse-grained model
which predicts three types of allosteric DNA-mediated
interactions. One could distinguish between the three cases
(or about the dominance of one of these) from the sign of
the interaction free energy and on its dependence on the
length of the DNA linker sequence separating the two
protein-binding sites. Prior work [3,5,6] pointed to some
examples of enthalpic DNA-mediated allostery character-
ized by a free energy of oscillating sign. We have argued
here that recent ComK data [4] show an allostery which is
of predominant entropic nature, as ΔΔFint < 0. Entropic
allostery (often referred as dynamic allostery) was dis-
cussed in the case of proteins [37,38], but it should manifest
itself in DNA as well. The model introduced here predicts
additionally a “mixed” allostery, obtained when coupling
two different proteins in which one exerts a linear field and
the other a quadratic one. This mixed allostery is of
enthalpic nature and we are not aware that such interaction
was discussed in the protein literature. Differently from the
protein case, in DNA-mediated allostery one can vary the
spacer sequence length, probing the decay of ΔΔFint,
therefore the type of allostery (enthalpic, entropic, or
mixed) should be easier to identify. By varying the binding
sites sequences one can bring in close vicinity proteins of
different types and which couple differently to the DNA
(e.g., predominantly via linear or quadratic fields), thereby
probing the three scenarios predicted by the model.
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