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Biological active matter is typically tightly coupled to chemical reaction networks affecting its assembly-
disassembly dynamics and stress generation. We show that localized states can emerge spontaneously if
assembly of active matter is regulated by chemical species that are advected with flows resulting from
gradients in the active stress. The mechanochemical localized patterns form via a subcritical bifurcation and
for parameter values for which patterns do not exist in absence of the advective coupling. Our work
identifies a generic mechanism underlying localized cellular patterns.
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Chemical reactions can lead to the emergence of
patterns, that is, spatiotemporally structured densities of
the chemical species involved [1]. Active materials that
transform chemical energy into mechanical work can self-
organize flow patterns and shapes [2]. Systems coupling
these two forms of self-organization are widespread,
notably in engineering and biology. Typically, in these
systems, chemistry is considered to control the mechanical
parts. Yet, researchers increasingly focus on situations
where chemistry and mechanics are mutually affecting
each other [3,4]. Despite the growing interest in these
systems, our understanding of spontaneous mechano-
chemical patterns is still limited.
A particularly interesting example of a biological mecha-

nochemical system is the actin cortex of animal cells. It is a
thin active layer beneath the outer membrane and consists
of actin filaments, myosin motors, and other actin-binding
proteins. It exhibits a variety of spatiotemporal patterns,
some of which have been argued to result from
self-organization during vital cellular processes like migra-
tion [5–7] or development [8–10]. The implications of
mechanochemistry in the dynamics of the actin cortex are
currently under intense theoretical scrutiny [11–15].
Whereas the most studied patterns extend over the whole

cell surface, the actin cortex also exhibits localized struc-
tures. Examples of the latter are isolated contractions, either
transient [16] or oscillatory [17], observed in adherent cells,
as well as isolated clusters of actin and signaling molecules
in cancer cells [18,19].
The mechanism underlying the localized structures

mentioned above has not yet been theoretically addressed.
Here, we argue that these structures correspond to localized
states (LSs) of spatially extended dynamical systems, i.e.,
self-organized states where a background state—here, the
homogenous, isotropic cortex—remains essentially unaf-
fected except in a finite region of space. In integrable

systems, LSs are well known, for instance in the form of
solitons, but they also occur in dissipative systems [20].
However, they have not been reported for the actin cortex
or, generally, active fluids.
Specifically, we use a continuum description to show

that mechanochemistry can produce self-organized LSs in
active fluids. Our description accounts for a generic
activator-inhibitor circuit involved in actin assembly
[6,17,21,22], as well as for convective flows induced by
gradients in the active stress [2].
Consider an isotropic active fluid. Its state is given by the

density c of the actomyosin network. The time evolution of
c is captured by the continuity equation

∂tcþ∇ · jc ¼ αna − kdc; ð1Þ

where ∇ is the spatial gradient operator, and the current
jc ¼ cv −Dc∇c. The current consists of a convective and a
diffusive part, where the latter accounts for fluctuations in
the system through the effective diffusion constant Dc.
Since cortical dynamics occurs at low Reynolds number,
we neglect inertial effects, such that the fluid velocity v is
determined by force balance,

∇ · σ ¼ γv; ð2Þ

σ ¼ 2ηvþ η̃∇ · v1þ πðcÞ: ð3Þ

Here, σ denotes the stress tensor and γ is a constant with the
dimensions of a friction coefficient that captures dissipation
in the cortex resulting, for example, from friction between
the actin network and the cell membrane.
The stress tensor has a viscous component, where η and

η̃, respectively, denote the shear and bulk viscosity of the
active fluid, v ¼ ð1=2Þ½∇vþ ð∇vÞT − ð∇ · v=dÞ1� is the
traceless strain rate tensor, d the number of spatial
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dimensions, and 1 is the identity. The nonviscous compo-
nent, πðcÞ ¼ ½πaðcÞ þ πpðcÞ�1, includes active and passive
terms, πaðcÞ ¼ ðζΔμÞ0c2 and πpðcÞ ¼ −bc3, respectively.
We assume the stress to be contractile for small densities c,
ðζΔμÞ0 > 0, whereas for high densities the hydrostatic
contribution dominates, b > 0 [23].
The remaining terms in Eq. (1) are discussed in Ref. [24]

and describe the effects of actomyosin assembly and
disassembly. In the actin cortex, assembly is mediated
by active actin nucleators [25,26], whose density is na.
The actin cytoskeleton and the network regulating its

assembly and activity form an excitable medium [17,21,22].
We account for this feature in terms of a generic activator-
inhibitor model [24,27]. Explicitly,

∂tna þ∇ · ja ¼ ω0ð1þ ωn2aÞni − ðωd;0 þ ωdcÞna; ð4Þ

∂tni þ∇ · ji ¼ −ω0ð1þ ωn2aÞni þ ðωd;0 þ ωdcÞna; ð5Þ

whereni is the distribution of inactive nucleators. In addition
to diffusion with respective diffusion constants Da and Di,
active and inactive nucleators are advected with the
active fluid, such that ja ¼ nav −Da∇na and analogously
for the inactive nucleators. We take Di ≫ Da, because, in
cells, inactive nucleators are cytosolic, whereas active ones
are membrane bound [25]. All terms on the right
hand side of Eqs. (4) and (5) are discussed in Ref. [24],
except for the spontaneous inactivation rate ωd;0. Note
that they conserve the total average nucleator density,
n̄ ¼ ð1=VÞ RVðna þ niÞdV, where V is the system volume.
Below, we consider periodic boundary conditions. No-flux
boundary conditions do not change our results.
We first consider the case of one spatial dimension,

d ¼ 1, with x∈ ½−l=2; l=2�. For simplicity, we assume that
η ¼ η̃. We introduce nondimensional variables, where the
unit length is λ ¼ ffiffiffiffiffiffiffi

η=γ
p

, the typical distance over which
the velocity field decays due to viscosity and friction, and
the unit time is τ ¼ λ2=Di, the typical time taken by an
inactive nucleator to diffuse a distance λ. Furthermore,
densities are scaled by n̄. We denote nondimensional
quantities with capital letters: X ¼ x=λ, T ¼ t=τ,
C ¼ c=n̄, NaðiÞ ¼ naðiÞ=n̄, and so on, Supplemental
Material (SM), Table II [28].
We first consider the caseΩd;0 ¼ 0. In this case, Eqs. (1)–

(5) have a unique homogenous steady state (H) [24].
A linear stability analysis shows that this state can become
unstable in favor of heterogeneous states that span thewhole
system, through finite wavelength stationary or oscillatory
(type Is or type Io [29]) instabilities, SMSec. I [28]. Note that
the conservation of n̄ implies a neutrally stable (large-scale)
mode of the dynamics, SM Sec. I [28]. We obtain hetero-
genous states by solving Eqs. (1)–(5) numerically. To this
end, we use a custom Julia [30] code, available online [31].

In addition to patterns spanning the whole system, our
numerical solutions reveal a rich variety of stable localized
patterns (LPs). LPs are a specific class of LSs that exhibit
some internal structure and typically come in groups of
related and (partially) coexisting states. In our system, LPs
feature an increased active fluid and nucleator density in a
confined region, Fig. 1(a). Outside this region, the densities
rapidly decay to some limiting values. With increasing
system size, the high density profiles converge and the
densities outside approach H, SM Fig. 3 [28]. Asymptotic
convergence and lateral decay toH classifies these states as
localized [20,32]. The parameter region where LPs exist
changes with increasing system size, but eventually con-
verges to a domain of finite measure [33,34].
The corresponding velocity profile indicates a constant

flow into the high density region, Fig. 1(a). In addition,
there is net assembly at the borders of the high-density
region, SM Fig. 4 [28]. These processes are compensated
by diffusive outflux from and disassembly in the center, SM
Fig. 4 [28].
Additional LPs exhibit internal patterns with different

numbers of density maxima (peaks), Figs. 1(b)–1(g). The
internal patterns can be understood as a consequence of an
instability of H. This idea was used in Refs. [35,36], when
studying localized patterns in reaction-diffusion systems
subject to inhomogeneous forcing. Here, the homogenous
state H is the one of Eqs. (1)–(5) with the total nucleator
density n̄ equal to that in the high density region of the
states LP2 to LP7 and all other parameters unchanged, SM
Sec. I [28]. Even though the linear stability analysis
indicates that the system is far away from the bifurcation,
the characteristic length of the LP in the high density region
falls well into the interval of linearly unstable modes.

(a) (b) (c)

(d) (e)

(f) (g)

FIG. 1. Localized patterns (LPs). (a) Density (black lines) and
velocity (pink line) profiles of a LP without internal peaks, LP0.
(b)–(g) Multipeaked LPi, where i ¼ 2;…; 7 is the number of
internal peaks. Parameter values as in SM Table II [28], with
Ωd;0 ¼ 0, Ωd ¼ 10, Z ¼ 15, and Ω ¼ 6 (a), 10 (b),(c), 14 (d)–(f),
15.5 (g).
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The velocity profile indicates a permanent convective
outflow from the internal peaks, SM Fig. 5 [28]. This
enables a repulsive hydrodynamic interaction between
neighboring peaks, which stabilizes LPs [37]. Active fluid
peaks are chemically maintained by nucleation through
corresponding internal peaks of active nucleator density,
SM Fig. 5 [28]. These in turn are maintained by a
permanent diffusive inflow of inactive nucleators that
locally activate, SM Fig. 5 [28]. This structure is in line
with the linear stability analysis and confirms that LPs are
mechanochemical in nature instead of resulting from a
chemical instability.
Equations (1)–(5) belong to the broad class of localized-

pattern forming systems exhibiting snaking, with examples
in chemistry, hydrodynamics, and optics [20,34]. Indeed,
the bifurcation diagram of LPs, Fig. 2, reveals a slanted
snaking scenario [38,39], typical of systems featuring a
finite-wavelength instability and a large-scale mode. In
slanted snaking, LPs with an even and odd number of
internal peaks form two, separate, intertwined branches
(whence the name “snaking”).
In our mechanochemical system, localization does not

require nonlinear chemical reactions. Consider the linear
kinetics limit of Eqs. (4) and (5), with Ω ¼ Ωd ¼ 0. In this
limit, the system admits LSs in the form of spikes [40] that
do not have internal patterns (peaks), Fig. 3(a). The absence
of LPs in this regime shows that the internal patterns of the
states in Figs. 1(b)–1(g) and SM Fig. 5 [28] strictly rely on
cooperative nucleator activation.
To clarify the nature of LPs and spikes as well

as the transition from one to the other, we employ
spatial dynamics [41,42]. That is, we consider the sta-
tionary version of Eqs. (1)–(5) and interpret the spatial

coordinate X as a (fictitious) time. We end up with eight
coupled ordinary differential equations for the effective
coordinates ðC;Na; Ni; VÞ and their effective conjugated
momenta PC ¼ dC=dX, Pa ¼ dNa=dX, Pi ¼ dNi=dX,
PV ¼ dV=dX, SM Sec. II [28]. The spatial dynamic system
is reversible, i.e., symmetric for ðX; VÞ → ð−X;−VÞ.
The homogenous stationary state H of the full dynamic

equations corresponds to a fixed point of the spatial
dynamics. In an infinite system, L ¼ ∞, LSs map to
homoclinic orbits joining H to itself in the spatial dynam-
ics, Fig. 3(b). These lie on the intersection of the stable and
unstable manifolds of H with points on the stable mani-
fold evolving toward H as X → ∞, whereas points on the
unstable manifold reach it for X → −∞. If the evolution
toward and away from the fixed point is monotonic, the
homoclinic orbit corresponds to a spike in the full dynami-
cal system. Otherwise, it corresponds to an LP. This
distinction can be captured by the eigenvalues of the spatial
dynamics linearized around H: spikes correspond to real
and LPs to complex spatial eigenvalues, Fig. 3(c). Note that
eigenvalues come in complex-conjugate pairs, due to
reversibility [34]. The transition from a complex-conjugate
pair (LP) to two real eigenvalues (spike) is reminiscent of a
Belyakov-Devaney instability [32,40].
LSs persist in two spatial dimensions (2D). Consider

a square domain, ðx; yÞ∈ ½−l=2; l=2� × ½−l=2; l=2�, with
periodic boundaries. In 2D, we find LPs with circular,
Figs. 4(a) and 4(b), or band-shaped domains, Figs. 4(c)
and 4(d). In either case, the velocity profile indicates a

FIG. 2. Slanted snaking. Bifurcation diagram of localized
patterns (LPs). Unstable branches are not shown. In the gray-
colored region, LP0 loses stability to oscillatory localized states.

ð∂XCÞ2 ¼ ð1=LÞ R L=2
−L=2 ð∂XCÞ2dX. Parameters and labels as in

Fig. 1.

(a)

(c)

(b)

FIG. 3. Spikes vs localized patterns (LPs). (a) Profile of a spike.
Parameter values as in SM Table II [28], with Ω ¼ 0, Ωd;0 ¼ 3,
Ωd ¼ 0, Z ¼ 20. (b) Spatial dynamics’ orbits corresponding to
the spike in panel (a), solid line, and LP0 in Fig. 1(a), dashed line,
projected onto the ðC; dC=dXÞ plane. (c) Eigenvalues of the
spatial dynamics linearized around H, for parameter values
corresponding to the spike in panel (a), ×, and LP0, þ. In either
case, the eigenvalue with real part equal to 1 has multiplicity 4. To
facilitate the view, the horizontal axis is broken and its scale
changes from left to right.
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constant flow into the high-density region, Figs. 4(a)
and 4(c). LSs with different symmetries can coexist, in
which case the steady state depends on the initial con-
ditions. Both circular and band-shaped LSs can develop
internal patterns, in the form of closely packed spots,
Figs. 4(b) and 4(d). The velocity profile indicates a constant
convective outflow from inner spots, SM Fig. 6 [28],
similar to the 1D case.
To conclude, motivated by the actin cortex of animal

cells, we studied a generic description of an active fluid
coupled to an assembly regulating module and found a
spectrum of LSs. In 1D, we could identify slanted snaking
to be at the origin of stationary LPs. Some LSs bifurcate
into oscillating LSs, which will be presented elsewhere.
In reversible systems, homoclinic orbits to hyperbolic

fixed points are structurally stable [32,43], such that they
are independent of the details of the underlying dynamic
equations. In the system studied here, the fixed point H is
not hyperbolic, due to the conservation of nucleators. Note,
however, that its center manifold is physically inaccessible
during the dynamics. Hence, from a physics standpoint, H
should behave as a hyperbolic fixed point. Indeed, our LSs
do not rely on parameter fine tuning or the presence of
chemical nonlinearities, which is consistent with structural
stability.
It has been argued that noise can promote transient LSs

in reaction-diffusion signaling networks in the absence of
mechanics [44]. Like localized extracellular stimuli, these
might serve as prepatterns and trigger the mechanochem-
ical route to stable LSs discussed above. Note that, in
parameter regions where H is unstable, our system can
generate LSs in the absence of a localized initial condition.

Because of the generic character of our approach, we
refrain from a detailed comparison with experiments. Still,
we want to point out some qualitative analogies between
the states discussed above and cellular localized structures.
In breast cancer cells, invadopodia are actin-rich protru-
sions that are surrounded by a ring of active Rho-C [19].
Rho-C is a small GTPase that is involved in activating actin
nucleation [45]. A similar distribution is observed in the LS
of Fig. 1(a), where the active nucleator is depleted from the
center of the LS, where actin density is high, and concen-
trates at the edges of the LSs by acquiring a two-peaked
profile. Other actin-rich protrusions are known as podo-
somes in macrophages, where they often coassemble into
rather circular podosome clusters [46]. The circular LP in
Fig. 4(b) is reminiscent of such clusters.
Beyond invadopodia and podosome clusters, LSs could

serve as programmable active stress foci to generate local
membrane protrusions, like filopodia [47] and dendritic
spines [48]. As a consequence, different experimental
systems are available to test the mechanism discussed in
this work.
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