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Convergence extension, the simultaneous elongation of tissue along one axis while narrowing along a
perpendicular axis, occurs during embryonic development. A fundamental process that contributes to
shaping the organism, it happens in many different species and tissue types. Here, we present a minimal
continuum model, that can be directly linked to the controlling microscopic biochemistry, which shows
spontaneous convergence extension. It is comprised of a 2D viscoelastic active material with a
mechanochemical active feedback mechanism coupled to a substrate via friction. Robust convergent
extension behavior emerges beyond a critical value of the activity parameter and is controlled by the
boundary conditions and the coupling to the substrate. Oscillations and spatial patterns emerge in this
model when internal dissipation dominates over friction, as well as in the active elastic limit.
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Convergent extension (CE) is a morphogenetic process
that occurs during development. It is conserved across
many different species, types of tissues, and stages of
development [1–4]. During convergent extension, a region
of sheetlike (epithelial) tissue elongates in one direction
(the long axis) and contracts perpendicular to it.
Convergent extension plays a key role in a variety of
developmental processes, such as primitive streak forma-
tion in chick embryos [5,6] and drosophila germ band
extension [7,8] which are important parts of gastrulation.
This is the topological inversion process shared by nearly
all multicellular animals and some plants [9] that leads to
cells taking up their correct positions within the embryo.
CE in epithelia is driven by cell intercalations [2,10], i.e.,

local cell rearrangements akin to the well-known topologi-
cal T1 transitions of two-dimensional (passive) foams
[11,12]. T1s in passive systems relax stresses generated
by external driving and underlie the rheology of foams,
which are typically yield stress materials [13]. However, in
epithelia, active T1 transitions [7,8,14] can generate
stresses locally in the absence of external driving, even
developing local stresses that oppose external boundary
forces. These are only possible due to motor-driven
contractile stress generation, i.e., the epithelial tissue is
active. It is natural to ask how such events coordinate with
each other to give coherent macroscopic deformations in
response to applied tension.

Until recently, the accepted answer has been preexisting
morphogenetic gene expression patterns that bias local
mechanical properties [10,15–17]. However, the actomyo-
sin fibers of the cytoskeleton themselves experience
mechanical feedback [18–20], and in, e.g., the chick
embryo there is no evidence for prepatterning [5].
Therefore, recent work has begun including active feedback
into models of coupled junctions [21–25]. The response in
tissues without T1s has also been investigated [26–28].
Hence, it is essential to study the active tissue mechani-

cal response with feedback built in. Active models of cell
sheets (without feedback) have a long tradition, from active
gel theory [29,30] to active nematics [31–33] and hexatics
[34]. They have focused on active instabilities and topo-
logical defect motion, including in vitro experiments [35],
rather than the functional response of the tissue. More
recently, spatial patterns [6,36] or anisotropic and signaling
feedback [37,38], recapitulating embryo observations, have
been imposed and the resulting flow quantified. Generic
models with feedback have also been recently proposed
[39–41]. However, so far a broader understanding of the
emergent active relation between applied stress and strain
rate, i.e., the tissue rheology, in the presence of feedback, is
missing.
Here, we present and analyze a continuum description of

an epithelium with active feedback where motor-driven
contractile stress builds up in response to applied tension as
in, e.g., a catch bond [42,43]. It is the continuum version of
a microscopic cell junction model [44] driven by stresses
generated by myosin-II motors acting on cytoskeletal
F-actin (actomyosin) that generate active T1s and CE flow
in a tissue patch. We formulate the model in terms of the
anisotropic distribution of actomyosin within cells, passive
viscoelastic stress, and the velocity via momentum balance
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with a substrate (see Fig. 1). We find that above a critical
activity CE states appear, characterized by flow against
externally applied stress which acts like a mechanical
signal (Fig. 2). In this parameter regime, we also find
contracting and expanding states that are isotropic and not
nematic. We explain this using a steady-state approxima-
tion of the feedback dynamics, where high (low) boundary
stresses select a high (low) actomyosin fixed point in the
interior, which builds up a spatial gradient leading to flow.
Separately, we find oscillating and patterned states in this
model in the active elastic and low substrate friction limits.
Model.—We write down continuum equations for the

epithelium as a 2D viscoelastic material that generates
active stresses internally, and is coupled to a substrate via
friction. Our fundamental quantity is the second rank

actomyosin tensor Mðr; tÞ. It encodes the spatially aniso-
tropic distribution of actomyosin which in embryonal
tissues is localized at the apical surface along the junctions
[6,36]. It can be defined using junction directions weighted
by actomyosin concentration [36,44,45] (see Fig. 1). It is
symmetric but not traceless, i.e., for cells with isotropic
actomyosin distributions, M ∝ I, the identity.
The other fields that characterize the material are local

velocity vðr; tÞ and local passive stress πðr; tÞ. The total
stress σðr; tÞ is the sum of the passive stress and an active
stress that generates the forces that remodel cell-cell
junctions. It is proportional to M: σ ¼ π þ βðM −m0IÞ,
where β is the activity parameter and m0 is a reference
concentration for actomyosin. We use m0 ¼ 1=2 through-
out. It can be explicitly derived for vertex models [44].
The dynamics of Mðr; tÞ is based on a myosin disso-

ciation constant that decreases with tension. It follows from
a contractile active junction that can remodel itself (see [44]
and Supplemental Material Eqs. S1–S4 [46]). Since this is
not sensitive to the precise functional form, we choose an
exponential, controlled by susceptibility k0 limiting the
components of M to the range 0–1. In addition, the
actomyosin tensor is convected and rotated by the flow,

τmM̊ ¼ I − ðI þ e−k0σÞ ·M þD∇2M: ð1Þ

The over circle represents the corotational deriva-
tive Å ¼ ∂tAþ v ·∇Aþω · A − A · ω, where ω ¼ ð1=2Þ
½∇v − ð∇vÞT � is the vorticity tensor. We also include
actomyosin diffusion with diffusion constant D.
The cell-cell junctions within the tissue are viscoelastic

[47], as is the tissue as a whole, with a timescale of stress
relaxation [48–51]. We use a convected compressible
Maxwell model for the passive stress, superimposing
compression and shear modes,

π þ τvπ̊ ¼ 1

2
ηpTrðγ̇ÞI þ ηs

�
γ̇ −

1

2
Trðγ̇ÞI

�
; ð2Þ

where τv is the viscous relaxation timescale, ηpðηsÞ are
the bulk (shear) viscosities. The strain rate tensor is
γ̇ ¼ ð1=2Þ½∇v þ ð∇vÞT �. The bulk and shear moduli are
related to τv and the viscosities via τv ¼ ηp=B ¼ ηs=μ. The
tissue is coupled to a substrate with friction coefficient ζ via
momentum balance in the overdamped limit, ζv ¼ ∇ · σ.
Results.—We integrated the equations in time using the

forward Euler method, approximating spatial derivatives
using second order accurate finite difference on a square
grid. The unit of time is the substrate elastic relaxation
timescale τel ¼ ζ=B, with both ζ ¼ 1 and bulk modulus
B ¼ 1, and we use a shear modulus μ ¼ 0.5. The myosin
feedback strength is set by k0 ¼ 8 in Eq. (1) and β sets the
active stress scale. We use a system size of L ¼ 50 cell
units with a grid spacing of 0.25 and we fix D ¼ 1.

FIG. 1. Schematic of a 2D sheet of tissue with actomyosin
localized along the junctions of the apical surface (shades of
green). The myosin tensorM encodes both the concentration and
the anisotropic distribution of actomyosin in cells, and gives rise
to active stress βðM −m0IÞ. The tissue is viscoelastic with a
viscous relaxation time τv.

(a)

(c) (d)

(b)

FIG. 2. (a) Steady state convergence extension velocity field at
β ¼ 0.7, σs ¼ 0.08, p ¼ 0, and τm ¼ τv ¼ 20.0. (b) Pure shear
strain as a function of pure shear stress at the boundary for various
values of activity. (c) xx component and (d) yy component of the
actomyosin tensor for panel (a).
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We simulate a patch inside a larger tissue by imposing a
constant total stress σext on the boundary while material
flows through freely. Our model is neither incompressible
nor density conserving as cells can reshape in the third
dimension, and also can divide or be extruded [5]. We
complement this with the equilibrium value M ¼ ð1þ
e−k0σ

extÞ−1 of the actomyosin tensor at the boundary and
invert for the passive stress π ¼ σ − βðM −m0IÞ. To study
CE, we impose pure shear boundary conditions with
simultaneous tension along x and compression along y
as shown in Fig. 1, i.e., σextxx ¼ −σextyy and σextxy ¼ 0, resulting
in pure shear stress σs ≡ σextxx − σextyy , with the isotropic part
of the applied stress p≡ σextxx þ σextyy ¼ 0.
Figure 2 summarizes our findings. We measure tissue

response using the spatially averaged pure shear strain rate
γ̇s ≡ hγ̇xx − γ̇yyi of the steady state. We can see in Fig. 2(b)
that at zero activity, γ̇s ¼ σs=ηs, i.e., the tissue indeed
behaves as a viscous liquid. Below a threshold activity
βc ¼ 0.5, the tissue continues to flow in the direction of
applied stress, and the effective viscosity stays positive.
However, actomyosin is built up by active tension feed-
back and eventually overwhelms pulling when β > βc.
Figures 2(c) and 2(d) show how Mxx builds up in the
tension direction, while Myy symmetrically drops in the
compression direction. Above βc, the tissue then shows
convergence extension [Fig. 2(a)] with the axis of elonga-
tion along the direction of compression, i.e., the tissue
flows against the applied force. Actomyosin gradients and
hence tissue flow is strongest near the boundary and decays
into the bulk. The CE rheological curves above βc in
Fig. 2(b) are highly unusual: the tissue responds to σs → 0

with a strongly symmetry broken CE, showing that the
applied stress acts like a mechanical signal. When σs
increases, the CE response diminishes, until at a β-depen-
dent value the tissue flow reverses into the direction of
pulling. For pure stretch or compression boundary con-
ditions, i.e., σs ¼ 0, p ≠ 0, the tissue, respectively, isotropi-
cally contracts or expands above βc (see Supplemental
Material, Figs. S1–S4 for full spatial profiles [46]).
Analysis.—We can understand the observed spontaneous

CE by approximating the nonlinear steady-state solutions
of Eq. (1). From setting M̊ ¼ 0, we can derive the
actomyosin nullcline equations

παα ¼ −
1

k0
log ðM−1

αα − 1Þ − βðMαα −m0Þ; ð3Þ

where α ¼ x, y and the off-diagonal components decay to
zero [Fig. 3(b)]. The only fixed point of the viscoelastic
passive stress is παα ¼ 0, resulting in the transcendental
equation πααðMααÞ ¼ 0. Below βc ¼ 0.5, this equation has
one stable solution, Mαα ¼ m0. Above the critical activity,
there is a pitchfork bifurcation with two stable branches
Mαα¼mþ>m0 andMαα ¼ m− < m0, while theMαα ¼ m0

branch becomes unstable [Fig. 3(a)].
During CE, the equal and opposite imposed boundary

stresses select a pair of points (stars) on the nullcline that
break symmetry, and at the center of the tissue, we find
Mxx ¼ mþ and Myy ¼ m−. The boundary conditions
determine the branches: if we reverse tension and com-
pression directions, we have Mxx ¼ m− and Myy ¼ mþ

instead. Convergence extension flows are generated by the

(a) (c) (e)

(b) (d) (f)

FIG. 3. (a) Pitchfork bifurcation of the mean field actomyosin concentration obtained via πααðMααÞ ¼ 0 as a function of activity for
k0 ¼ 8. (b) Mean field nullcline of Ṁ, πααðMααÞ (red) and corresponding simulation data for β ¼ 0.7, σs ¼ 0.08, p ¼ 0,
τm ¼ τv ¼ 20.0, with blue dots for πxxðMxxÞ along y ¼ 0, green dots for πyyðMyyÞ along x ¼ 0. The central (boundary) points are
marked with a triangle (stars), and the three πααðMααÞ ¼ 0 solutions with circles. (c) xx and yy components of the simulated (solid) and
mean-field (dashed) M tensor for the same parameters as Fig. 2(c). (d) Simulated vx velocity profiles in the CE state as a function of
viscous timescale and for ratio R ¼ τv=τm ∈ ½0.4 − 0.5�, showing decay length. (e) Decay length and (f) pure strain rate in the CE phase
as a function of τv together with mean field prediction (dashed).
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spatial gradients in stress between boundary and center via
momentum balance. We empirically observe that the values
of these stresses interpolate between boundary and center
points along the πααðMααÞ nullcline [Fig. 3(b)].
We can derive an approximate solution for the CE steady

state by linearly expanding around the stable πααðm�Þ ¼ 0
fixed points and write πxxðMxxÞ ¼ π0ðmþÞmx, πyyðMyyÞ ¼
π0ðm−Þmy where mx ¼ Mxx −mþ; my ¼ Myy −m−, and
set the off diagonal components to zero. We thus eliminate
the actomyosin equation and once we use momentum
balance to write γ̇, Eq. (2) for the stress to linear order
in mx and my becomes

π0ðmþÞðmx þ τv∂tmxÞ ¼ Aþ∂2xmx þ A−∂
2
ymy;

π0ðm−Þðmy þ τv∂tmyÞ ¼ Bþ∂2ymy þ B−∂
2
xmx;

0 ¼ ∂x∂yðCþmx þ C−myÞ; ð4Þ

where constants A�; B�; C� are given by Supplemental
Material, Eq. S12 [46]. If we work in the limit t ≫ τv, we
can neglect the time derivative resulting in coupled PDEs in
x and y for mxðx; yÞ and myðx; yÞ. The final solution takes
the form of a hyperbolic cosine in x and in y,

mx ¼ Cx cosh

�
x
Λþ

�
þ Cy cosh

�
y
Λ�

�
; ð5Þ

with the full solution and derivation given in Supplemental
Material, Eqs. S10–S15 [46] and where the prefactors of
each term are set by the boundary conditions. The length
scale Λþ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðηs þ ηpÞ=ζ
p

, and we can derive the precise
decay length (Supplemental Material, Eq. S17 [46])
Λd ∼

ffiffiffiffiffi
τv

p
, independent of τm of the Mαα profiles.

Figure 3(c) shows that the analytic approximation closely
matches the numerical solution, and Fig. 3(e) shows that
both the value of Λd and the fact that it is τm independent
are good predictions. The same ratio of viscosity to
substrate friction then determines the penetration length
of the gradient and therefore the extent of CE flow, as can
be seen in the numerical velocity profiles in Fig. 3(d). We
can derive an analytical prediction for the CE strain rate γ̇s,
Supplemental Material Eq. S15 [46], shown as a dashed
line together with the numerics in Fig. 3F, showing the
same scaling.
Broader context.—In phase diagram Figs. 4(a) and 4(b),

we show that other solutions than CE defined as steady-
state time-independent flow opposite to applied stress,
emerge in our model at large τv or τm. For very small τv
if τm is large, the solution as expected localizes near the
boundaries but M drops to the m− solution throughout and
we reach the time-independent expanding Loc Exp steady
state as (Fig. S7 [46]). If we instead take the limit τv → ∞
at small τm, we observe pattern formation and regular
oscillations in steady-state in the system, including for the
first time a significantMxy component [Figs. 4(c) and 4(d);

Supplemental Material, Fig. S5 and movie “oscillating”
[46] ]. This is the Osc state, corresponding to the active
elastic limit where our system behaves as an elastic solid
with moduli B and μ coupled to the substrate with friction
ζ. It has recently been shown that active instabilities and
off-diagonal responses are a characteristic feature of active
elastic systems with feedback [52–54] and that they also
formally arise in viscoelastic systems [55]. Here, we show
that they arise in a model for a biological tissue, raising the
intriguing possibility that pattern formation in development
could make use of such mechanisms.
In the limit of where τm; τv ≫ τel (corresponding to the

“wet” limit where substrate friction can be neglected), we
observe a spatial destabilization of the CE pattern with
complex spatiotemporal yet slow dynamics, which we refer
to as the CSP (complex spatiotemporal pattern) phase
(Supplemental Material, Fig. S6 and movie “CSP” [46]).
Our equations bear some similarities to active nematic

systems, but only for the CE states which involve the
traceless parts ofM and π. In contrast, isotropic contracting
and expanding states are controlled by TrðMÞ and TrðπÞ
(see Supplemental Material Eq. S20 [46]). We also do not
find the generic instabilities usually observed. We observe
instead robust and steady CE flows which is clearly very
useful for biological functionality and control. While the
friction with the substrate and the viscoelasticity act as
stabilizers on short times and length scales, the key feature
that keeps robust control is the interplay between the
nonzero stress boundary conditions and the mechanochem-
ical feedback of the actomyosin dynamics.

(a) (c)

(b) (d)

FIG. 4. Phases observed for other timescale ratios for β ¼ 0.7,
σs ¼ 0.08, p ¼ 0. (a) Observed phases as a function of viscous
relaxation timescale τv and myosin timescale τm, in units of
elastic substrate relaxation timescale τel ¼ ζ=B ¼ 1. (b) Charac-
teristic velocity fields of convergent-extension (CE), instability,
oscillating, and localized expanding states. (c),(d) actomyosin
wave pattern excited in the oscillating state for the Mxx (top) and
off-diagonal Mxy (bottom) components.
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To explore this nice feature of the model and to compare
to active nematics, we consider the dynamics of the
traceless part of the actomyosin tensor, Q, i.e., M ¼
Qþ 1

2
TrðMÞI. By expanding the matrix exponential in

Eq. (1) to linear order in Q, one can show that (see
Supplemental Material, Eqs. S16–S27 [46])

Q̊ ¼ aQþ bπ̃ þ c gπ · Qþ d gQ · π þD∇2QþOðQ2Þ; ð6Þ

where π̃ is the traceless part of π, gπ · Q is the traceless part
of π · Q, gQ · π is the traceless part of Q · π,
a ¼ ð1=2Þβk0 − 2, b ¼ k0=2, c ¼ k0ð1 − βk0=4Þ, and
d ¼ βk20=4. The first term shows that there is an isotropic
to nematic transition at β ¼ 1=2, the critical activity derived
from our theory. For β < 1=2, we have a stable isotropic
material. For β > 1=2, we have a nematic, however, the
second term coming from the passive stress feedback at
leading order resembles an applied field that will depend on
boundary conditions. This field will in general suppress
instabilities. The higher order terms will decorate this base
state and can lead to a variety of interesting dynamical
states, consistent with the simulations. While isotropic to
nematic transitions driven by active flow have been
observed in a variety of systems [56–58], here we provide
a new mechanism for driving a transition to the nematic
phase caused by mechanochemical feedback which resem-
bles the application of an external field.
In summary, here we have introduced a continuummodel

of developmental tissues where convergence-extension
flows arise wholly from mechanical feedback. We find
robust CE flows where applied tension acts like an external
field to determine the flow direction, based on breaking the
symmetry of spontaneous actomyosin polarization. CE then
arises from the active stress profile due to incommensu-
rability between a bulk fixed point and the boundary
conditions. Our model also shows pattern formation and
spontaneous oscillations in the active elastic limit.
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