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Liquid crystal elastomers (LCEs) are soft phase-changing solids that exhibit large reversible contractions
upon heating, Goldstone-like soft modes, and resultant microstructural instabilities. We heat a planar LCE
slab to isotropic, clamp the lower surface, then cool back to nematic. Clamping prevents macroscopic
elongation, producing compression and microstructure. We see that the free surface destabilizes, adopting
topography with amplitude and wavelength similar to thickness. To understand the instability, we
numerically compute the microstructural relaxation of a “nonideal” LCE energy. Linear stability reveals a
Biot-like scale-free instability, but with oblique wave vector. However, simulation and experiment show
that, unlike classic elastic creasing, instability culminates in a crosshatch without cusps or hysteresis, and is
constructed entirely from low-stress soft modes.

DOI: 10.1103/PhysRevLett.131.238101

Liquid crystal elastomers (LCEs) are actuating solids
that recall the dramatic shape transformations of biological
tissues. Microscopically, LCEs are networks of LC poly-
mers [1]. Actuation occurs via the isotropic-nematic phase
transition, which biases conformations along the director,
generating large elongations on cooling, and muscular
contraction on heating [2,3]. Correspondingly, LCEs fab-
ricated with spatial director profiles can actuate into
complex surfaces [4] such as cones [5,6] or faces [7,8].
The symmetry breaking character of the isotropic-nematic
transition also endows LCEs with Goldstone-like “soft
modes” in which deformations induce director rotation at
almost zero energy and stress [9,10]. Such modes enable
actuation by modest electric fields [11,12] and generate
martensitic [13] microstrucural instabilities [14–16].
However, despite progress in idealized cases [16–18], we
still lack a realistic coarse-grained constitutive model that
accounts for microstructure, preventing analysis of macro-
scopic LCEs under load.
Mechanical instabilities like buckling provide an attrac-

tive additional route to complex morphing without pre-
patterning. For example, the Biot creasing instability
sculpts cusped folds at the free surface of soft solids under
compression [19–22], and underpins morphogenesis of villi
[23] and sulci or gyri [24]. Here, we combine experiment,
theory, and computation to tackle the analogous compres-
sive surface instability in LCEs, which is profoundly
enriched by soft modes and microstructure.

Experimentally, we fabricate a monodomain LCE
[Supplemental Material (SM) [25], Sec. I] via two-step
cross-linking with mechanical programming [2], using
commercially available acrylate-functionalized mesogens
and thiol-functionalized chain extenders and cross-linkers
[8,26]. The resulting film is clear but birefringent at room
temperature, reflecting its planar nematic alignment, and

FIG. 1. (a) Schematic of LCE actuation between hot (isotopic)
and cold (nematic), and resulting surface instability when adhered
to a foundation while hot. (b) Micrographs polarized optical
microscopy (POM) of surface instability for varying LCE
thicknesses. (Scale bars 500 μm.) (c) Topography changes
(boxed region) from optical profliometry (SM, Sec. III [25]),
true aspect ratio.
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elongates reversibly by a factor of λs ≈ 2 on cooling from
isotropic to nematic (SM, Fig. S2 [25]). Inspired by
observations of creasing in gel slabs that are swollen on
a clamped foundation [20,22], we adhere the LCE to a glass
slide while isotropic then cool to nematic [Fig. 1(a)]. The
slide prevents elongation, placing the LCE in compression,
causing turbidity in the LCE indicative of optical-scale
microstructure. Moreover, the surface destabilizes, forming
a high amplitude crosshatch pattern of topography with
wide bumps separated by narrow valleys [Figs. 1(b) and 1(c),
and SM [25], Sec. III, Movies M1 and M2]. Topography is
reversible on heating (SM [25],MovieM3), and experiments
varying LCE thicknesses show amplitude and wavelength
are proportional to thickness.
To explain the instability, we first model the LCE as a

simple rubber slab undergoing a spontaneous elongation
while clamped below, leading to a displacement field u
(from isotropic) and deformation gradient Λ ¼ Iþ∇u. A
standard neo-Hookean rubber with shear modulus μ
stores elastic energy density WNHðΛÞ ¼ 1

2
μTrðΛΛTÞ, and

is strictly incompressible DetðΛÞ ¼ 1. Accordingly, the
LCE energy is WNHðΛΛ−1

s Þ, where ΛsðnÞ ¼ λsn ⊗ nþ
λ−1=2s ðI − n ⊗ nÞ is the spontaneous elongation.
Minimizing this energy in an infinite planar slab with a
clamped foundation is known to generate a standard
Biot-type surface instability, with cusped furrows
(creases) appearing subcritically at the linear threshold
of λs ≈ 2.27 [19,27], and being global minimizers beyond
the nonlinear nucleation threshold of λs ≈ 1.77 [21,27]
(SM, Sec. V [25]). We confirm these expectations with 3D
finite elements, using a bespoke C code from [22] that
divides the slab into constant strain tetrahedra, and moves
nodes via damped Newtonian dynamics. These calculations
exhibit regular crease lines perpendicular to the director,
agreeing with previous elastomer experiments [28] and
numerics [22], but disagreeing with the smooth crosshatch
in LCEs.
The key additional consideration is that n can rotate

within the LCE, enriching the energy with soft modes.
Explicitly minimizing over (unit) directors leads to an
energy depending solely on deformation [16],

WIðΛÞ ¼
1

2
μðΛ2

1λs þ Λ2
2λs þ Λ2

3=λ
2
sÞ; DetΛ ¼ 1; ð1Þ

where the Λi are the ordered principle stretches. This form
matches the ideal LCE “trace formula” (with λs ¼ r1=3),
originally derived from statistical mechanics [1,29], and is
minimized by any ΛsðnÞ, revealing the degenerate set of
ground states [Fig. 2(a)]. Furthermore, the energy is
susceptible to microstructure [Figs. 2(a) and 2(b)]. For
example, if an LCE cools forming n ¼ ŷ and is then
stretched along x̂, then at an imposed stretch of λ3=2s , it will
again attain a low energy state with n ¼ x̂. However,
intermediate pure stretches are not soft, as the corresponding

ground states require shear. Nevertheless, the LCE can
accommodate pure stretch macroscopically by rapidly
switching between bands of alternating shear: a laminar
“stripe-domain” microstructure [15] that is geometrically
compatible and soft.
More generally, any pure shear can be expressed as

Sðγ; m̂Þ ¼ Iþ γ ⊗ m̂, where m̂ defines the shear plane
and γ, orthogonal, encodes magnitude and direction. A
lamination averaging to Λ is then constructed as

Λ ¼ fΛ1 þ ð1 − fÞΛ2; where

Λ1 ¼ S½ð1 − fÞa; m̂�Λ and Λ2 ¼ Sð−fa; m̂ÞΛ; ð2Þ

and 0 < f < 1 is the volume fraction of Λ1. If the resultant
energy, fWðΛ1Þ þ ð1 − fÞWðΛ2Þ, is lower than WðΛÞ,
then microstructure is favored. The full relaxation of
WIðΛÞ has been constructed [16], showing that any Λ
with principle stretches less extreme than λs may be
achieved softly with double laminates. Since this set
contains Λ ¼ I, the LCE can microstrucurally accommo-
date the experimental compression, motivating turbidity but
not macroscopic surface instability.
The final missing physics is nonideality: fabrication

imprinted a preferred director n0, breaking degeneracy.
Imprinting generates an additional bulk anchoring term
(akin to E or B fields in liquid nematics [30]) parametrized
by a small coefficient α penalizing rotation away from
n0 [31]:

WNIðΛÞ ¼ min
n

�
WNH½ΛΛ−1

s ðnÞ� þ 1

2
αλsμ

× Tr½ΛðI − n0 ⊗ n0ÞΛTn ⊗ n�
�
: ð3Þ

We again minimize over n by collecting the relevant terms
as 1

2
μTrðMn ⊗ nÞ, and directing n along M’s minimizing

eigenvector. We then implement WNI in finite elements to
simulate the LCE slab (SM, Sec. VII [25]). An initial

FIG. 2. (a) Soft modes in LCEs. (b) Experimental and theo-
retical [1] stress-strain curves. Theory parameters: λs ¼ 2,
α ¼ 0.05, μ ¼ 600 kPa. (c) Micrographs of a stripe microstruc-
ture rotated under cross-polarizers. Scale bar 500 μm.
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calculation clamping top and bottom surfaces (Λ ¼ I)
produces microstructure suggestive of double lamination
but with mesh-scale oscillations in director and deforma-
tion (Fig. S11 [25]). Releasing the top produces promising
thickness-scale topography, but atop mesh-scale oscilla-
tions. Ultimately, this approach is unsatisfactory, as the
(nonquasiconvex [16,32]) energy’s minimizers are infi-
nitely fine microstructures. Physically, resolution requires
a Frank energy 1

2
Kj∇nj2 which smooths director variation

over the “nematic penetration depth” l ∼
ffiffiffiffiffiffiffiffiffi
K=μ

p
∼ 10−8 m

[1], regularizing the interfaces [15]. Incorporating Frank
energy enables converged mesh-independent results [33],
but requires meshes fine compared to l that are infeasible
for macroscopic samples.
Instead, we adopt a two-scale approach, first computing

the microstructural relaxation of WNI for any average
deformation, then using this relaxed energy for macro-
scopic analysis. This relaxation problem is solved analyti-
cally for films in tension [15,17], but a 3D result remains
distant so we construct it numerically. The space of 3D
deformations Λ is 9D; however, incompressibility, frame
indifference, and uniaxial material symmetry allow the
energy to be parametrized by just four scalar invariants
[34,35]. We may thus reexpress any nematic energy as
WðΛÞ ¼ wðΛ1;Λ3; θ;ϕÞ, θ, ϕ being the latitude and
longitude of n0 in the (reference) stretch axes. To relax
the energy, we construct a grid of ∼50 000 points over this
space, spanning 1 ≤ Λ3 ≤ 4with δΛ3 ¼ 0.1 resolution, and
the remaining three (finite) dimensions with 11 even points
each. We then compute a test deformation ΛtðΛ1;Λ3; θ;ϕÞ
at each point, matching the invariants, and minimize over
“rank-1” laminates:

WR1ðΛÞ ¼ min
f;m̂;a⊥m̂

fWNIðΛ1Þ þ ð1 − fÞWNIðΛ2Þ: ð4Þ

Minimization over f, m̂, and a (five d.o.f.) is conducted in
Mathematica, using simulated annealing and conjugate
gradient (SM, Sec. VIII [25]). Interpolation over the grid
then yields a numerical approximation of WR1 and the
lamination parameters. Repeating withWR1 producesWR2,
while further iterations provide no benefit. For strong
convergence, we conduct a final conjugate gradient min-
imization with analytic derivatives over the full 15 d.o.f. of
double lamination. The relaxed first Piola-Kirchhoff stress
for the Λt at each point is then computed as the volume-
weighted sum of the four constituent stresses, themselves
evaluated as analytic derivatives PNIij ¼ ð∂WNI=∂ΛijÞ (SM,
Sec. VI [25]). Interpolation yields a numerical stress for any
Λt, which we rotate to produce the stress for any Λ.
In Fig. 3we show two resulting energy and force-extension

curves: uniaxial stretch along n0 and simple shear perpen-
dicularly. In both, microstructure occurs over a finite region,
convexifies the energy, and eliminates discontinuities and
negative stress gradients. Uniaxial stretching experiments

(by adhering at intermediate temperatures) show a very fine
microstructure generating a hazy appearance in the expected
region, which coarsens into a visible crosshatch microstruc-
ture and then ultimately vanishes as the relaxed monodomain
state λs is approached [Fig. 3(a)]. Samples adhered at λ ¼ 1
also show the macroscopic surface instability, but these large
features contain the fine microstructural crosshatches within
(see Movie M4 and Fig. S8 [25]) justifying our two-scale
approach. An additional test case, perpendicular stretching of
a sheet (Fig. S13 [25]), agrees with analytic results [15,17].
Corresponding experiments [Fig. 2(b)] confirm a stress
plateau (and lamination) consistent with material values
α ≈ 0.05, λs ≈ 2.
Having tested the relaxed energy and stress functions, we

minimize to predict the surface instability. We consider
an LCE slab initially occupying −t < z < 0, that is
clamped below, free above, and has planar n0 ¼ x̂. The
final configuration minimizes the total energy W ¼R
WNðΛÞdV over permitted displacement fields u, requir-

ing stress balance, ∂iPij ¼ 0, with P · ẑ ¼ 0 on top. We first

FIG. 3. Energy and stress upon (a) uniaxial stretch Λ ¼ λn0 ⊗
n0 þ λ−1=2ðI − n0 ⊗ n0Þ and (b) simple shear Λ ¼ Iþ
γðn0 × n⊥

0 Þ ⊗ n⊥
0 . Gray domain, no microstructure; blue, first-

order laminate; red, second-order laminate. (a) bottom: POM of
experimental samples (t ¼ 170 μm; scale bar 500 μm) showing
microstructure evolution under uniaxial strain. λ ¼ 1 shows
surface instability, 1 < λ < λs shows crosshatch microstructure,
and λ ≥ λs is a clear monodomain.

PHYSICAL REVIEW LETTERS 131, 238101 (2023)

238101-3



minimize using finite elements (SM, Secs. IV and X [25]).
For simplicity, we mimic incompressibility by taking
WN as compressible but with a large bulk modulus of
B ¼ 100μ:

WNðΛÞ ¼ WR2ðΛ=DetΛ1=3Þ þ 1

2
BðDetΛ − 1Þ2: ð5Þ

An initial computation considers a near square slab
(6.24t × 6t) divided into 126 000 elements of size 0.06t.
The LCE is modeled with λs ¼ 2, α ¼ 0.05, and initialized
at Λ ¼ I. As seen in Fig. 4(a) and SM Movie M5 [25], the
free surface immediately destabilizes to oblique mesh-scale
ripples, which coarsen via dynamics into an equilibrium
crosshatch strongly resembling experiment. We then use
fine-mesh calculations on geometrically optimized unit
cells to find the exact minimizers for a range of λs and
α (i.e., different LCEs). All are unstable, but with lower
amplitude at lower λs, and shifting wave vectors at higher α
[Fig. 4(c)]. The range of α explored spans the reported range
for physical monodomain LCEs [15], suggesting the cross-
hatch instability is ubiquitous in LCEs under compression.
Equilibrium amplitude and wavelength are necessarily sim-
ply proportional to the problem’s only length scale t, and in
good agreementwith experiment.Moreover, unlike creasing,
all topography is smooth and noncontacting.
Linear stability analysis offers further insight. Owing to

finite compressibility, the equilibrium equations admit a

transitionally invariant base state Λ0 ¼ Iþ γẑ ⊗ ẑ, where
γ ∼ αμ=B ∼ 10−5. Following Biot [19], we consider an
infinite depth slab (half-space), and add a small incre-
mental displacement, u¼γẑþϵu1, giving Λ ¼ Λ0 þ ϵΛ1.
Since perturbations are about equilibrium, energy varies
quadratically:

WN ¼ WNðΛ0Þ þ 1

2
ϵ2

∂
2WN

∂Λij∂Λlm

����
Λ0

Λ1
ijΛ1

lm: ð6Þ

Minimizing variationally over displacement gives the incre-
mental equilibriumequations, ∂iP1

ij ¼ 0 andP1ẑ ¼ 0, where
P1
ij ¼ ð∂2WN=∂Λij∂ΛlmÞjΛ0

Λ1
lm. Many of these derivatives

are zero via uniaxial material symmetry. The remainder, we
compute using finite differences, reducing the energy to a
quadratic in∇u1, and the stress equations to linear constant-
coefficient ordinary differential equations. To compute
accurate derivatives, we explicitly reminimize WR2 at the
finite-difference points, revealing additional zero curvatures
corresponding to vanishing incremental moduli for shearing
perpendicular to n0 [cf. the WR2 plateau in Fig. 3(b)]. Such
vanishing moduli have been observed at the onset of
monodomain striping [30,36] but are here deep within the
microstructure region. The underlying cause is that optimal
lamination involves four equivalent deformations, and such
shears are accommodated by rearranging volume fractions,
similar to how, in 1D, curvature vanishes after common-
tangent convexification.

FIG. 4. (a) Dynamics and coarsening of the surface instability with ðλs; αÞ ¼ ð2; 0.05Þ. (b) Comparison of experimental (t ¼ 220 μm)
and numerical ðλs; αÞ ¼ ð2; 0.05Þ topography. Wavelengths measured in POM, line profiles and amplitude from optical and scanning
profilometry, errors are one standard deviation, n ¼ 10. (c) Simulated topography for ðλs; αÞ ¼ ð1.44; 0.05Þ; ð1.71; 0.05Þ;
ð2.15; 0.05Þ; ð2.15; 0.15Þ; ð2.15; 0.3Þ.
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To solve, we substitute an ansatz that decays with depth,
u1 ¼ expðkλzÞvðx; yÞ, and undulates in plane with k vector
along x0, forming an angle θ with x:

v ¼ ch cosðkx0Þx̂0 þ cg cosðkx0Þŷ0 þ sinðkx0Þẑ:

Substituting into the stress equations (SM, Sec. XI [25])
trigonometric, exponential, and k factors all cancel, leaving
dimensionless algebraic equations for cg, ch, and λ. Solving
for cgðλÞ and chðλÞ reveals a final quadratic in λ2 giving two
decaying roots (λ1, λ2), and hence,

u1 ¼ c1 expðkλ1zÞvðλ1Þ þ c2 expðkλ2zÞvðλ2Þ:

We then substitute u1 into the energy and integrate,
yielding a quadratic in c1, c2. Stability follows from the
Hessian, with negative eigenvalues indicating growing
perturbations. Inevitably given the scale-free character,
stability is independent of k. More surprisingly, despite
uniaxial symmetry, all angles are unstable. We thus assess
relative growth rates from the eigenvalue’s magnitude,
revealing an oblique perturbation grows fastest [Fig. 5(a)],
motivating the crosshatch.
To study onset, we imitate a cooling LCE via the energy

ð1 − fÞWNHðΛÞ þ fWR2ðΛÞ, with f a temperature proxy.
Both finite-elements and linear analysis show onset around
f ≈ 0.96. Furthermore, finite elements show onset is super-
critical, with topography appearing continuously and with-
out hysteresis [Fig. 5(b)], unlike the strong subcriticality of
Biot creasing.
Our work thus shows that the exotic constitutive law of

LCEs still supports a compressive surface instability, with
similar scale-free properties to Biot creasing, but also
fundamental differences in pattern, criticality, and singular-
ity. We anticipate similar behavior will be found in other soft
solids with distinctive constitutive laws: highly anisotropic
solids (fiber reinforced elastomers, biological tissues), phase-
changing solids, active nematic solids, and mechanistic
metamaterials are all important and analogous examples.

Hopefully, such studieswill also generate a stronger intuition
for Biot-type instabilities, and ultimately enable a predictive
analytic framework. Within LCEs, our rigorously homo-
genized constitutive law also enables quantitative mechani-
cal engineering including studies of other instabilities [37–
42], and our homogenization approach will similarly enable
analysis of other phase-changing materials [13,43,44].
The LCE surface instability is also an exemplar of

instabilities providing complex morphing without corre-
spondingly complex fabrication. A limitation is that this
approach provides little control over pattern. However,
some more complex morphing may be regained by com-
bining instability with simple patterned fabrication. As an
example, we repeat our experiment, using an LCE slab
containing a radial director pattern (fabricated by forming a
cone during programming), which generates crosshatches
in a striking log spiral [Figs. 5(c) and 5(d)]. The instability’s
switchable high amplitude topography suggests applica-
tions in smart surfaces. For example, a droplet sitting atop
the instability [Figs. 5(e) and 5(f)] forms a Wenzel state
[45,46] with both a higher contact angle and stronger
pinning than one atop an identical smooth LCE. Such
hydrophobic pinning is observed on rose petals, which
have a strikingly similar topography [47,48]. Further smart-
surface applications could include switchable aerodynam-
ics, haptics, adhesion, and friction.
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