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The coupled quantum dynamics of electrons and protons is ubiquitous in many dynamical processes
involving light-matter interaction, such as solar energy conversion in chemical systems and photosynthesis.
A first-principles description of such nuclear-electronic quantum dynamics requires not only the time-
dependent treatment of nonequilibrium electron dynamics but also that of quantum protons. Quantum
mechanical correlation between electrons and protons adds further complexity to such coupled dynamics.
Here we extend real-time nuclear-electronic orbital time-dependent density functional theory (RT-NEO-
TDDFT) to periodic systems and perform first-principles simulations of coupled quantum dynamics of
electrons and protons in complex heterogeneous systems. The process studied is an electronically excited-
state intramolecular proton transfer of o-hydroxybenzaldehyde in water and at a silicon (111) semi-
conductor-molecule interface. These simulations illustrate how environments such as hydrogen-bonding
water molecules and an extended material surface impact the dynamical process on the atomistic level.
Depending on how the molecule is chemisorbed on the surface, excited-state electron transfer from the
molecule to the semiconductor surface can inhibit ultrafast proton transfer within the molecule. This Letter
elucidates how heterogeneous environments influence the balance between the quantum mechanical proton
transfer and excited electron dynamics. The periodic RT-NEO-TDDFT approach is applicable to a wide
range of other photoinduced heterogeneous processes.
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Quantum dynamics of electrons and protons are essential
for various dynamical processes involving light-matter
interaction. The ability to investigate coupled dynamics
of excited electrons and proton transfer from first princi-
ples is particularly important in areas of solar energy
conversion research. Excited-state intramolecular proton
transfer (ESIPT) serves as a prototypical example of
such a quantum mechanical process and holds significance
in numerous biological and chemical systems [1-4].
Although ESIPT has been the topic of many theoretical
studies [5-8], the impact of heterogeneous environments,
such as a material surface with interfacial solvating water
molecules, on this dynamical process has not been explored
extensively. The proton transfer and excited electron
dynamics are quantum mechanically coupled, and the
environment is likely to influence the delicate balance of
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these coupled quantum dynamics in a complicated manner.
In particular, excited electrons are inherently dynamic in
condensed matter systems due to the dense manifold in the
electronic excitation spectrum. Although ESIPT typically
occurs within a well-defined electronic excited state in an
isolated molecular system, such proton transfer becomes
coupled to the nonequilibrium dynamics of excited elec-
trons when the molecule is situated in a heterogeneous
environment.

Nonequilibrium dynamics of electrons in response to
external stimuli can be studied by simulating the time
evolution of the quantum state with a time-dependent
perturbation in the system’s Hamiltonian [9,10]. In the
last few decades, the real-time propagation approach to
time-dependent density functional theory (RT-TDDFT)
[I1] has gained popularity as a particularly practical
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computational methodology for investigating nonlinear
electronic responses in complex matter because of the
appealing balance between accuracy and efficiency. RT-
TDDFT simulations have been increasingly employed to
address various scientific questions associated with non-
equilibrium electronic dynamical phenomena [12,13],
including those of condensed matter systems [14—18].

At the same time, the inclusion of nuclear quantum
dynamical effects is important for simulating processes
such as excited-state proton transfer. A wide range of
approaches have been developed for describing nuclear
quantum effects, such as path integral formulations [19—
23], exact factorization [24-26], and multiconfigurational
time-dependent Hartree quantum dynamics [27,28]. Zhao
et al. [29] recently combined a RT-TDDFT approach with
ring-polymer dynamics based on the path-integral formu-
lation and showed the importance of proton quantization in
a water dimer. In addition to these approaches, the nuclear-
electronic orbital (NEO) method developed by Hammes-
Schiffer and co-workers has been shown to be effective for
treating specified nuclei quantum mechanically on the same
level as electrons within various electronic structure meth-
ods [30-33]. The NEO-DFT method is formally based on
the general multicomponent DFT formalism [34-37]. In
recent work, we extended the NEO method for periodic
electronic structure calculations so that condensed matter
systems can be studied [38]. The NEO method has also
been combined with RT-TDDFT simulations (RT-NEO-
TDDFT) for studying the coupled quantum dynamics of
protons and electrons in molecular systems [39-43].
Importantly, the NEO formulation does not rely on the
usual Born-Oppenheimer approximation between electrons
and protons and provides real-time quantum dynamics of
protons and electrons on equal footing.

Herein, we develop the periodic RT-NEO-TDDFT
approach, which enables first-principles simulations of
the non-Born-Oppenheimer, nuclear-electronic quantum
dynamics of extended condensed matter systems. By
employing the Kohn-Sham (KS) ansatz within multi-
component DFT, the system’s dynamics are governed by
a set of coupled time-dependent KS equations for electrons
and quantum protons,
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Here, w¢ (r¢,t) and w?(r?,r) are the electronic and
protonic time-dependent KS orbitals, and m® and M? are

the electron and proton masses, respectively. veK/Sp is the

standard KS effective potential, while veLP represents the

electrostatic potential due to the other types of quantum
particles. Ep is the quantum mechanical correlation func-
tional between electrons and protons [31,44,45]. This
electron-proton correlation (epc) is important for accurately
describing several proton properties such as the proton
densities and zero-point energy in previous works [33,46].
Technical implementation details of the periodic RT-NEO-
TDDFT approach in the all-electron FHI-aims code [47,48]
are available in the Supplemental Material [49]. Using this
newly developed periodic RT-NEO-TDDFT method, we
elucidate the competing kinetics between excited elec-
tron dynamics and quantum mechanical proton transfer in
heterogeneous environments.

Quantum mechanical proton transfer between two
oxygen atoms in the o-hydroxybenzaldehyde (oHBA)
molecule is a well-known example of ESIPT. In a previous
study, Zhao et al. [39] investigated the transfer dynamics
using RT-NEO-TDDFT and observed ultrafast proton
transfer [39]. In this Letter, the initial electronic excited
state was prepared by promoting one electron from the
molecule’s HOMO to its LUMO and, to facilitate ESIPT,
the molecular geometry was chosen to be the structurally
relaxed geometry in the S1 excited state with the proton
constrained to be bonded to its donor [39] [see Fig. 1(a)].
All nuclei other than the transferring proton were fixed in
the initial work, but the Ehrenfest dynamics of these
classical nuclei were also simulated in later work [41].
These simulations were conducted on an isolated oHBA
molecule in vacuum or in dielectric continuum water [56].

Herein, we investigate situations where the oHBA
molecule is in heterogeneous environments, including
the presence of explicit water molecules and adsorption
onto a semiconductor surface. Such scenarios are com-
monly encountered in solar-fuel research [57] where photo-
or electroactive molecules are adsorbed on semiconductor
surfaces. Nevertheless, our current understanding of how
various environmental effects, such as hydrogen bonding
from solvating water molecules or electrostatic fields from
the semiconductor surface, impact the coupled quantum
dynamics between protons and electrons is limited. Our
RT-NEO-TDDFT simulations employ the Perdew-Burke-
Ernzerhof (PBE) [58] generalized-gradient approximation,
together with the adiabatic approximation [59] to the
exchange-correlation (XC) functional. The tier 2 numeric
atom-centered orbital [47] basis set is employed for
electrons. The protons were modeled with the Hartree-
Fock approximation and a Gaussian-type basis with the
fixed proton basis function center method, following
Ref. [39]. The epcl7-2 electron-proton correlation func-
tional [44,45], which was developed based on an extension
of the Colle-Salvetti formulation, was used for the electron-
proton correlation. Additional computational details are
provided in the Supplemental Material [49], including the
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The geometries of (a) the isolated oHBA molecule (with the quantum proton highlighted using a white isosurface) and (b) a

snapshot of the oHBA molecule solvated in liquid water from the FPMD simulation. The isosurfaces show the molecular HOMO state
(yellow) and the molecular LUMO state (blue). (c) Distances between the position expectation value of the transferring proton and the
donor (blue) and acceptor (red) oxygen atoms in the oHBA molecule as a function of the time. The circles represent the isolated oHBA
molecule in vacuum, and the solid lines represent the solvated oHBA molecule in water. The shaded areas along the solid lines indicate
the standard deviation for the ensembles using six different snapshots from the FPMD simulation.

comparison to conventional RT-TDDFT simulations to
illustrate the effect of the quantum proton dynamics on
the excited electron dynamics.

Aqueous solutions are typical condensed matter envi-
ronments for many molecular photochemical processes.
Molecules solvated in aqueous solutions are particularly
ubiquitous in solar-fuel conversion processes involving
CO, reduction and H,O oxidation. To obtain equilibrated
configurations of oHBA in water, we performed first-
principles molecular dynamics (FPMD) simulations with
the oHBA molecule in a cubic simulation cell using
periodic boundary conditions with 57 water molecules in
each simulation cell at room temperature (300 K). For these
FPMD simulations, we used the strongly constrained and
appropriately normed (SCAN) meta-generalized-gradient
approximation [60] for the XC functional, as it has been
shown to provide a reasonably accurate structure of water
[61], and the geometry of the oHBA molecule was held
fixed. We then performed RT-NEO-TDDFT simulations on
six randomly selected snapshots from the FPMD trajectory
[see Fig. 1(b)]. The transferring proton in the oHBA
molecule and the nearest protons of the surrounding
H,O molecules that are hydrogen bonded to the two
oxygen atoms of the oHBA molecule were quantized.

The RT-NEO-TDDFT simulations were initiated by
exciting an electron from the HOMO to the LUMO of
the oHBA molecule, which are also the valence band
maximum (VBM) and conduction band minimum (CBM)
states of the entire system in this case. Figure 1(c) shows
the time evolution of the proton transfer coordinates, which
are defined by the distances from the position expectation
value of the transferring quantum proton to the donor
oxygen atom (H-Op) and to the acceptor oxygen atom
(H-O,), in comparison to the corresponding values from

the simulation of the isolated oHBA molecule in vacuum.
The shaded area indicates the variations among the RT-
NEO-TDDFT simulations using different snapshots from
FPMD as initial conditions, and the solid lines represent the
average values. Initially, the proton is bonded to the donor
oxygen atom, Op, with the bond length of 1.05 A while the
distance to the acceptor oxygen atom O, is 1.56 A. When
the oHBA molecule is isolated in vacuum, the quantum
proton transfers in this electronically excited state on
the femtosecond timescale, as previously reported [39].
Although the solvating water molecules induce relatively
large fluctuations among the six trajectories, ESIPT con-
sistently takes place on a similar timescale compared to the
isolated vacuum case. At the same time, the surrounding
water molecules influence the details of the quantum proton
transfer, including the transfer timescale and O,-H/Op-H
distance oscillations, as indicated by the standard deviation
in Fig. 1(c) (see also Supplementary Material [49]).
Examining the time-dependent probability amplitudes of
the excited electron and the hole in terms of the KS
eigenstates (see Supplemental Material [49]) showed that
both the excited electron and the hole tend to remain in the
HOMO and LUMO of the molecule without acquiring
nonmolecular characters during the ESIPT process. In other
words, no charge transfer takes place between the oHBA
molecule and its surrounding water molecules. This is not
surprising because the molecular HOMO and LUMO are
spatially well localized on the molecule and energetically
well separated from the rest of the valence band and
conduction band states (see Supplemental Material [49]).
In addition, no quantum proton transfer between water
molecules and the oHBA molecule was observed.
Therefore, to a large extent, the ESIPT remains similar
to the process in vacuum or dielectric continuum water,
even when the molecule is solvated in explicit water.
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FIG. 2. (a) Geometry of the oHBA molecule directly chemi-
sorbed on a hydrogen-terminated Si(111) surface. Isosurfaces for
one of the three hybridized HOMO (hyb-HOMO) states (yellow)
and the hybridized LUMO (hyb-LUMO) state (blue) are also
shown. Molecular structures of the oHBA molecule with a hyb-
HOMO state (yellow) and hyb-LUMO state (blue) are shown
for (b) the direct attachment and (c) the attachment with a
-C = C- linker group in between. (d) The density of electronic
states for the direct attachment (solid line) and with the linker
group (dashed line). The Fermi energy, defined here as the VBM
of the equilibrium ground state, is at 0 eV, and the hyb-HOMO
states and hyb-LUMO state are highlighted in yellow and blue,
respectively.

Next, we consider the oHBA molecule chemisorbed on a
hydrogen-terminated Si(111) surface as an example that is
often seen in solar-fuel research [57]. The semiconductor
surface is modeled using a slab model with eight silicon
bilayers (32 Si atoms per bilayer and a total of ~3700
electrons). I'-point-only integration of the Brillouin zone
sampling was employed here. The transferring proton in the
oHBA molecule was quantized. As shown in Figs. 2(b) and
2(c), two different attachments to the surface are consid-
ered: one with direct chemisorption and the other with a
-C = C- linker group between the oHBA molecule and the
surface. When chemisorbed onto the semiconductor sur-
face, the HOMO and LUMO states of the oHBA molecule
hybridize with the electronic states of the semiconductor
surface. By using the Mulliken population analysis, we
identified three valence band states that derive from the
hybridization of the molecule’s HOMO and one conduction
band state that derives from the molecule’s LUMO, as
shown in Fig. 2. Figure 2(d) shows that these hybridized
molecular states are situated energetically within the
manifold of semiconductor electronic states; these hybrid-
ized HOMO and LUMO states from the oHBA are
energetically lower than the VBM and higher than the
CBM, respectively. We performed several RT-NEO-
TDDFT simulations with the initial particle-hole excitation
corresponding to an electron excited from one of the
HOMO-hybridized (hyb-HOMO) states into the LUMO-
hybridized (hyb-LUMO) state. Note that the hyb-HOMO
states have greater contributions from the surface than does
the hyb-LUMO state [Fig. 2(a)].
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FIG. 3. (a) Distances from the position expectation value of the
transferring proton to the donor oxygen atom (Op) (red) and the
acceptor oxygen atom (O,) (blue) as a function of the time for
the isolated oHBA in vacuum (circles) and the oHBA on the Si
surface with the direct attachment (solid lines) and with the linker
group (dashed lines). (b) The percentage of the hole (red) and the
excited electron (blue) spatially localized on the oHBA molecule
based on Mulliken population analysis with the direct attachment
(solid lines) and with the linker group (dashed lines). The shaded
areas along the lines indicate the standard deviation for the initial
particle-hole excitation from the three different hyb-HOMO
states.

Figure 3(a) depicts the proton transfer in terms of the
position operator expectation value for the RT-NEO-
TDDFT simulations performed with the Si surface. The
results are compared to those for the isolated molecule in
vacuum (shown with open circles). The solid and dashed
lines correspond to the direct attachment of the molecule
onto the surface and attachment through the linker, respec-
tively. The shaded areas represent the small variations
observed with the excitation of an electron from different
hyb-HOMO states [shown in Fig. 2(d)]. The dynamics are
minimally influenced by the specific hyb-HOMO state
from which the electron is excited. Our RT-NEO-TDDFT
simulations show that the ultrafast ESIPT does not occur
when the molecule is directly chemisorbed to the surface.
In contrast, the ESIPT still occurs when the molecule is
attached to the surface via the linker group. It is commonly
assumed that the molecule remains in a particular elec-
tronically excited state during such an ESIPT process, as
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prescribed by the Born-Oppenheimer approximation.
However, the excited electrons are inherently dynamic,
and coupling to a dense manifold of electronic states, as for
the Si surface, can significantly influence the ESIPT
behavior.

In order to gain insight into the notable difference when
the linker group is present, we quantified the spatiotem-
poral changes for the excited electron and hole using the
Mulliken population analysis [62]. Figure 3(b) shows the
probability amplitudes of the excited electron and hole
within the oHBA molecule. Because of the hybridization
with the surface for the hyb-HOMO and hyb-LUMO states,
the excited electron and hole show significant contributions
from the surface instead of the molecule. The hole, which
exhibits a significantly reduced contribution from the
molecule, does not show appreciable changes during the
dynamics. When the molecule is directly chemisorbed on
the surface, the excited electron rapidly transfers to the Si
surface [Fig. 3(b)], which apparently competes with the
proton transfer process and effectively suppresses the
ESIPT. However, with the linker group, the excited electron
transfer to the surface is significantly slowed down, and the
excited electron remains mainly within the molecule on the
timescale of the ESIPT. Thus, the quantum proton transfer
can still take place albeit with a slower transfer time as seen
in Fig. 3(a).

To gain further insight into the nonequilibrium electron
dynamics responsible for the ESIPT, we show the time-
dependent probability amplitudes of the hole and the
excited electron represented as a superposition of the KS
energy eigenstates from the conduction and valence band
states in Fig. 4. Figures 4(a) and 4(b) are for the direct
chemisorption of the molecule, whereas Figs. 4(c) and 4(d)
are for the chemisorption with the linker group. The figures
here show the representative case where an electron
is excited from the second hyb-HOMO state into the
hyb-LUMO state, and other cases are shown in the
Supplemental Material [49].

Initially, the excited electron and hole are represented by
individual eigenstates, specifically the hyb-LUMO and
hyb-HOMO states, respectively. As the quantum proton
responds to the particle-hole excitation and begins to
transfer from the Op to the O, atom, the excited-state
electronic structure changes as well. For the case of direct
chemisorption, both the excited electron [Fig. 4(a)] and the
hole [Fig. 4(b)] acquire growing contributions from other
eigenstates in time. By examining the projected density of
states (see Supplemental Material [49]), these eigenstates
are determined to be spatially localized on the Si surface for
the excited electron. The probability amplitude change
from the initial hyb-LUMO to other eigenstates is not
monotonic but rather is somewhat oscillatory, as expected
from the damped oscillatory transfer of the excited electron
to the Si surface [Fig. 3(b)]. Higher-energy eigenstates
show significant amplitudes on this ultrafast timescale, but
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FIG. 4. The time-dependent probability amplitudes of the
excited electron and hole in terms of the Kohn-Sham eigenstates
of the ground-state system with direct attachment (a),(b) and with
the linker group (c),(d). (a),(c) and (b),(d) are for the excited
electron and the hole, respectively.

the excited electron is likely to relax toward the CBM states
on a much longer timescale by coupling with phonons
[63—65]. The hole shows a significant oscillatory behavior
in the probability amplitudes among the three hyb-HOMO
states, as perhaps expected. With the presence of the linker
group, however, the probability amplitudes show a different
behavior. For the excited electron [Fig. 4(c)], the amplitude
remains dominated by the initial hyb-LUMO state, as
expected from the lack of significant transfer to the Si
surface [Fig. 3(b)]. The hole shows strong periodic ampli-
tude changes, mostly among the three hyb-HOMO states,
as seen in Fig. 4(d).

In summary, we have presented the periodic RT-
NEO-TDDFT methodology as a valuable first-principles
approach for studying the coupled quantum dynamics of
electrons and protons in extended systems beyond the
conventional Born-Oppenheimer approximation. Through
the investigation of ESIPT in the oHBA molecule, we have
demonstrated the method’s capability to provide mecha-
nistic insights into how this dynamic process is influenced
by heterogeneous environments, such as solvating water
molecules and semiconductor-molecule interfaces. Our
findings reveal that the ultrafast ESIPT process is highly
sensitive to the molecular details of surface adsorption.
Specifically, the presence of a linker group changes the
delicate balance between quantum mechanical proton
transfer and nonequilibrium dynamics of excited electrons,
underscoring the importance of the interplay between
electrons and protons. With the continued development
of accurate exchange-correlation approximations and
increasingly more powerful computers, we envision the
new periodic RT-NEO-TDDFT methodology making
important contributions to developing a deeper scientific
understanding of coupled quantum dynamics of electrons
and protons in complex chemical systems.
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