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We study the temperature evolution of quasiparticles in the correlated metal Sr2RuO4. Our angle
resolved photoemission data show that quasiparticles persist up to temperatures above 200 K, far beyond
the Fermi liquid regime. Extracting the quasiparticle self-energy, we demonstrate that the quasiparticle
residue Z increases with increasing temperature. Quasiparticles eventually disappear on approaching the
bad metal state of Sr2RuO4 not by losing weight but via excessive broadening from super-Planckian
scattering. We further show that the Fermi surface of Sr2RuO4—defined as the loci where the spectral
function peaks—deflates with increasing temperature. These findings are in semiquantitative agreement
with dynamical mean field theory calculations.
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Many correlated electron systems with diverse magnetic
and electronic ground states turn into bad metals at high
temperature—that is, their resistivity increases with tem-
perature and shows no sign of saturation well beyond the
Mott-Ioffe-Regel (MIR) limit, where the mean free path
defined in semiclassical transport models drops below
interatomic distances [1–3]. Examples include cuprates [4],
ruthenates [5], iron pnictides [6,7], manganites [8], alkali
doped C60 [9], and organic salts [10].
A pragmatic definition of a quasiparticle (QP), adopted

throughout this Letter, is the existence of a clearly
discernible peak in the spectral function. The bad metal
state at or beyond the MIR limit does not host quasipar-
ticlelike excitations, because, with a coherence length
below the Fermi wavelength, a particlelike description
is no longer appropriate. This is qualitatively consistent
with angle-resolved photoemission spectroscopy (ARPES)
studies of cobaltates [11], ruthenates [12–14], or iron
chalcogenides [15,16], which all found that QPs disappear at
temperatures well below the MIR limit. This behavior was
thus far interpreted as a gradually decreasing QP residue Z
with increasing temperature [11,13]. A crossover where
Z → 0 with increasing temperature is also found in a
slave boson [17] and in dynamical mean field theory

(DMFT) [10,18,19] studies of the single-band Hubbard
model for undoped systems close to the metal-insulator
transition. Work on organic salts found that the transition
Z → 0manifests itself as a crossover froma badmetal regime
in which Z is finite to a semiconductorlike resistivity at high
temperature where Z ≈ 0 [10]. Such a resistive transition is
reminiscent of the c-axis resistivity in Sr2RuO4 [20] but is not
observed for in-plane transport in Sr2RuO4 and most other
bad metals.
An alternative picture that is intuitively appealing for

metallic systems is that at elevated temperatures excita-
tions become more bare-electron-like and that QPs become
short-lived but simultaneously lose renormalization such
that Z → 1. This behavior is indeed found in DMFT
studies of the doped Hubbard model [21,22] and of
Hund metals [23–25].
The QP residue Z is defined as Zk ¼ ð1−∂Σ0ðω; kÞ=

∂ωjω¼0Þ−1, where Σ0 is the real part of the self-energy. Z
corresponds to the integral of the coherent QP peak in the
spectral function and is, thus, also called QP weight.
However, in real systems there is no established way to
distinguish the “coherent” from the “incoherent” part of the
spectrum, and, therefore, extracting Z from an analysis of
spectral weight may be difficult. Moreover, in ARPES
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data, it is often not obvious how to separate increasingly
broad peaks from the background which is often poorly
understood.
Here, we address these issues by studying the fate of QPs

in Sr2RuO4 with increasing temperature. Analyzing the
dispersion measured by ARPES rather than the spectral
weight, we show that the QP residue Z increases in
Sr2RuO4 with increasing temperature, contrary to earlier
reports. QPs eventually disappear at elevated temperature
by “dissolving” in the incoherent part of the spectrum
rather than by losing spectral weight. We further show that
the evolution of Z with temperature derived from our data is
in agreement with DMFT calculations and fully consistent
with the ARPES spectral weight.
Sr2RuO4 is an ideal material to address the evolution of

the QP residue Z with temperature. In its normal state,
Sr2RuO4 is a prototypical correlated metal with a well-
understood electronic structure, a large mass enhancement,
and sharp QP peaks at low temperature [26–28]. Resistivity
data show a well-defined Fermi liquid regime below TFL ≈
25 K crossing over to an extended regime with T-linear
resistivity [5,29]. Depending on the precise criterion, the
MIR limit is surpassed for ρ ¼ 0.1–0.7 mΩ cm reached at
T ¼ 300–800 K [5]. Crucially for our approach here, the
self-energy of Sr2RuO4 is dominated by local electron-
electron correlations and, thus, does not have signifi-
cant momentum dependence [26,30]. In this limit, the
QP residue is related to the velocity renormalization
ðvF=vbareÞ ¼ Z, where vF and vbare are the QP and bare
Fermi velocity, respectively. We will base our quantitative
analysis on this relation (and refer to this quantity as “QP
residue”) before demonstrating that Z obtained in this way
is fully consistent with the integral of coherent spectra
(referred to as “QP weight”).
Figure 1 shows ARPES data of Sr2RuO4 acquired at a

photon energy of 40 eV. Details of the measurement
conditions are given in Supplemental Material [31].

Throughout this Letter, we focus on the momentum space
cut marked by a thick black line in Fig. 1(a). Along this
high-symmetry line, orbital hybridization is minimal, and
the β and γ sheets retain ≈80% xz=yz and xy orbital
character, respectively [26].
The comparison in Fig. 1(b) with the bare band

dispersion introduced in Ref. [26] illustrates the strong
and orbital-dependent mass enhancement of the QP exci-
tations in Sr2RuO4 documented in the literature [26,27,47].
Intriguingly, monitoring the spectral function with increas-
ing temperature reveals an apparent dichotomy between
energy distribution curves (EDCs) and the two-dimensional
energy-momentum images. The EDCs of the γ band
[Fig. 1(c)] show a well-defined sharp peak at low temper-
ature that decays with increasing temperature and appears
to be swallowed by the background around 130 K. Similar
observations in earlier work were interpreted as a transition
Z → 0 and have been related to the crossover to semi-
conducting c-axis transport in Sr2RuO4 [13,20]. Intere-
stingly, though, the ARPES image plots in Fig. 1(d) show
QP-like bands up to higher temperature with no sign of a
transition at 130 K. Additional data in Supplemental
Material (Fig. S9) [31] shows that bandlike states persist
up to ≈250 K. This illustrates that analyzing spectral
weights in EDCs is delicate and may not be robust. We
note that the apparent suppression of peaks in EDCs is not
an artifact of the Fermi cutoff. In Fig. 1(c), we deliberately
extracted EDCs at an initial state energy of −10 meV to
minimize effects of the Fermi-Dirac distribution.
We start our quantitative analysis by fitting the peak

positions of the β and γ bands in momentum distribution
curves (MDCs). Assuming that both bands disperse sym-
metrically around the Brillouin zone boundary, we obtain
their Fermi wave vectors from kβ;γF ¼ π=a − Δkβ;γ=2,
where Δkβ;γ is the separation of the Fermi level crossings
in the first and second Brillouin zone, as indicated in

(d)(c)(a)

(b)

FIG. 1. (a) Schematic of the Fermi surface of Sr2RuO4. (b) Low-temperature ARPES data showing the β and γ band dispersing
symmetrically around the Brillouin zone boundary. Yellow and green lines are the bare dispersions of the β and γ bands, respectively,
obtained from the Hamiltonian introduced in Ref. [26]. (c) EDCs extracted for the γ band at the momentum indicated by a dashed line in
(b), corresponding to a QP energy of −10 meV. (d) Temperature dependence of the ARPES spectral functions for the same cut shown in
(b). Data are shown in reverse chronological order over a complete temperature cycle.
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Fig. 2(a). We note that finite energy resolution leads to an
“up turn” in the apparent dispersion measured by ARPES
with peak positions in MDCs that deviate from the
quasiparticle dispersion [48]. We have quantified this
artifact (see Supplemental Material, Figs. S6 and S7 [31])
using DMFT spectral functions—which are known to
provide a good description of high-resolution laser-
ARPES data [26]—and show in Fig. 2(b) directly the
corrected wave vectors. As a further cross-check, we
performed 2D fits of the ARPES data that include reso-
lution effects directly as a convolution with a 2D response
function. The results from these 2D fits are fully consistent
with the MDC analysis shown here (see Supplemental
Material, Fig. S10 [31]).
Intriguingly, our analysis shows that kF shrinks with

increasing temperature for both bands. This signifies a
deflation of both the β and γ sheets. Such a change in Fermi
surface volume cannot arise from interorbital charge trans-
fer; neither does it imply a reduction of the carrier density.
Our DMFT calculations—in which the integral over the
spectral function precisely reproduces the number of
electrons—show a comparable deflation of the Fermi
surfaces, as shown in Supplemental Material, Fig. S6 [31].
This appears to be a consequence of the van Hove
singularity above EF that tends to increase electron
occupancy at high temperature when QPs broaden. This
change must be compensated by diminishing μ−Σ0ðω¼ 0Þ
(here, μ is the chemical potential) in order to maintain the
total electron count, which, in turn, leads to a reduced kF
and apparent deflation of the Fermi surface. However, this
argumentation is not general. It assumes that the incoherent
parts of the spectral function do not change importantly
with temperature, which does not always hold [21,22,49].
Changes in Fermi surface volumes were also observed in
iron pnictides [50,51], but there the behavior might have

different contributions including magnetism, charge reor-
ganization due to thermal expansion, and possibly also a
partial localization of carriers.
Extending the analysis of MDCs to energies below the

chemical potential shows a remarkable orbital differentia-
tion. The QP band position k1 at E − EF ¼ −29 meV
increases markedly for the γ sheet, while it is nearly
temperature independent for the β sheet. We have verified
that this behavior cannot be attributed to the effects of thermal
expansion on the bare band structure. Hence, we conclude
that both QP bands “unrenormalize”with increasing temper-
ature, but the γ sheet does so much more rapidly and in a
slightly different way, as indicated pictorially in Fig. 2(c).
We estimate the QP residue Z from our analysis by

assuming a parabolic dispersion of the β and γ bands
symmetrically around the Brillouin zone boundary at π=a.
In this case, the QP Fermi velocity vFðTÞ is uniquely
determined by kFðTÞ and k1ðTÞ. Figure 3(a) shows ZðTÞ ¼
vFðTÞ=vbare obtained in this approximation for vβbare ¼
2.57 eVÅ and vγbare ¼ 1.06 eVÅ obtained from the bare
Hamiltonian in Ref. [26]. We find that Z in Sr2RuO4

increases with temperature. For a direct comparison of our
experimental results with DMFT calculations, we trans-
form ZDMFT from an orbital to a band basis, as described in
Ref. [26] [dashed black lines in Fig. 3(a)]. This reproduces
the slope of ZðTÞ found in experiment. We note that the QP
residues obtained from our MDC analysis are slightly
higher than found in DMFT and in a previous ARPES
study restricted to low temperatures [26]. This difference is
reduced in a 2D analysis of the experimental data (see
Supplemental Material [31]).
The temperature dependence ofZ affects the QP scattering

rate ΓQP ¼ ℏ=τ. In Fig. 3(b), we compare ΓQP obtained from
2Dfits of the experimental datawithDMFTand thePlanckian

(a) (b) (c)

FIG. 2. (a) MDCs at EF extracted from ARPES data with Lorentzian fits to quantify peak positions of the β and γ band. Additional
examples of fits are shown in Supplemental Material, Fig. S5 [31]. (b) Temperature dependence of kðTÞ − kðT ¼ 0Þ at E ¼ EF and
E ¼ −29 meV. Different colors indicate different experimental runs. Squares and triangles represent temperature up and down sweeps,
respectively. The values shown have been corrected for finite energy resolution as described in Supplemental Material [31]. Raw peak
positions from MDC fits are shown in Supplemental Fig. S7(c) [31]. (c) Schematic illustrating the temperature evolution of the QP
dispersion of the β and γ band.
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value kBT [52,53]. We restrict this comparison to the γ band,
for which the 2D fits are more reliable. The DMFT QP
linewidth is calculated from Γν ¼

P
ΓmjUmνðkÞj2, where m

and ν are the orbital and band indices, respectively,
Γm ¼ −Σ00ðω; TÞf1 − ½∂Σ0ðω; TÞ=∂ω�jωg−1, and jUmνj2 is
the orbital content obtained from the bare Hamiltonian. One
sees that the scattering rate exceeds the Planckian bound
already for T ≳ 50 K and continues to grow with a positive
curvature. The scattering rates obtained from theARPESdata
are in quantitative agreement with resistivity measurements
(see Supplemental Material [31]). We further note that the
slight underestimation of ℏ=τ in DMFT is fully consistent
with the small contribution of electron-phonon scattering
identified in recent theoretical work [54].
Figure 3(c) shows that the deflation of the Fermi sur-

faces of Sr2RuO4 and the “unrenormalization” of its QP
dispersion reported here are readily discernible in the
DMFT self-energies. The slope of Σ0 reduces for both
orbitals with increasing temperature, implying that the
Fermi fluid in Sr2RuO4 is less renormalized at higher
temperature. At the same time, Σ0ðT;ω ¼ 0Þ increases with
temperature, causing a positive QP energy at the bare Fermi
wave vector and, thus, a deflation of the Fermi surface.
We now return to the evolution of spectral weights with

temperature. Our findings in Fig. 3 of Z which increases
with temperature indicate that the QP spectral weight
should also increase with temperature. However, this
appears to be in contradiction with the temperature-
dependent EDCs presented in Fig. 1(c), which show QP
peaks gradually becoming swallowed by the background.
Indeed, it is this picture of temperature-dependent EDCs
which has led to previous conclusions of Z decreasing as
temperature is increased [13]. This apparent discrepancy
poses an important conceptual question: Are QP weights
and velocity normalizations responding differently to a

change in temperature? To answer this question, we first
analyze QP weights in DMFT spectral functions.
Figure 4(a) shows DMFT spectra Aðk0;ωÞ calculated

for a momentum k0 where the QP energy of the γ band
is ≈ − 20 meV. The main peak just below the chemical
potential can, thus, be attributed to the γ band. Additional
peaks in the unoccupied states and around −0.4 eV
originate from the β and α bands, respectively. As expected,
the γ band QP peak broadens progressively with increasing
temperature, and its height diminishes. At the same time, it
evolves from the typical asymmetric Fermi liquid line
shape at low temperatures toward a Lorentzian at elevated
temperature.
To estimate the QP spectral weight, we expand the

self-energy to first order around the QP peak position
ω0: Σ0 ¼ Σ0

0 þ ð1 − 1=ZÞδω and Σ00 ¼ Σ00
0 þ αδω, where

δω ¼ ω − ω0. The spectral function is then given by
A1ðk; δωÞ ≈ −π−1Z2ðΣ00

0 þ αδωÞ=½δω2 þ Z2ðΣ00
0 þ αδωÞ2�.

Fits of the DMFT spectra with this expression show that the
first-order approximation is sufficiently flexible to capture
the evolution of the line shape with temperature and
provides a physically meaningful estimate of the QP
weight. Significantly, we find that the QP weight does
increase with temperature despite the peaks becoming less
intense. The direct comparison of the QP weight from these
fits with Zðω0Þ ¼ ½1 − ð∂Σ0=∂ωÞjω0

�−1 obtained from the
DMFT self-energy [inset in Fig. 4(a)] shows minor quan-
titative differences but illustrates that the concept of QP
weight remains meaningful at elevated temperature in
DMFT spectra of multiband systems.
We now address the consistency of ARPES spectral

weights with the increase in Z found from the ARPES
dispersions. To this end, we first isolate the intrinsic
spectral function from the ARPES spectra by subtracting
a “background.” The latter arises from inelastically

FIG. 3. (a) Temperature dependence of Z ¼ vF=vbare for the γ and β bands compared to DMFT calculations. Filled symbols with
different color shading indicate different experimental runs. Squares and triangles represent temperature up and down sweeps,
respectively. The dashed black lines give Zν ¼

�P
Z−1
m jUmνðkÞj2

�−1. Diamond symbols connected by lines are obtained by repeating
the ARPES analysis on DMFT spectral functions. (b) QP line width ΓQP ¼ ℏ=τ (full width half maximum) obtained from 2D fits
compared with DMFT results and the Planckian limit kBT. In (a) and (b), different symbols and colors are used for different
experimental runs and temperature up and down sweeps. (c) DMFT self-energies.
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scattered electrons but may also contain contributions from
the interference of multiple photoemission channels and is
notoriously hard to model [55,56]. We, therefore, resort to a
pragmatic approach and approximate the background with
the spectrum at π=a where no direct transitions are
observed in the relevant energy range (see Supplemental
Material, Sec. VIII [31], for more details). In contrast to the
approach of Ref. [13], this results in spectra with QP-like
excitations persisting up to the highest temperatures of
≈250 K studied in our experiment [Fig. 4(b)].
Direct fits of these background subtracted spectra with

A1ðk; δωÞ given above proved to be unstable. However, the
evolution of the line shape and peak intensity in our
experimental data is in excellent agreement with DMFT
spectral functions as shown in Fig. 4(b). Note that in this
comparisonwe apply only a global, temperature-independent
scaling factor between the DMFT and the experimental
spectra. This implies that the experimental spectral weights
are fully consistent with an increase in Z with increasing
temperature.
In summary, our work shows that QPs in Sr2RuO4 are

resilient up to temperatures approaching the MIR limit.
Notably, we find no abrupt changes in behavior as the
temperature crosses TFL ≈ 25 K or through the metal-
insulator crossover in ρc at ≈130 K. Quantitative analysis
shows that the QP residue Z increases with increasing
temperature. This resolves the inconsistency of previous
experimental findings with modern numerical many-body
calculations [13,23–25] and constrains theoretical descrip-
tions of the bad metal state of Sr2RuO4. It also raises the

question whether the behavior found here is the only one
consistent with bad metal transport. Hund metals with an
orbital selective Mott phase, as proposed by Yi et al. for
certain iron chalcogenides [15], may show QP weights→ 0
for orbitals that localize, while the weights of orbitals
contributing to high temperature transport may well show
the behavior uncovered here for Sr2RuO4. An important
issue for future experimental work will be to investigate QP
residues in Mott systems such as VO2 and V2O3 or doped
iridates and cuprates [57,58].

The research data supporting this publication can be
accessed at the Yareta repository of the University of
Geneva [59].
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