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Atomic simulations of materials require significant resources to generate, store, and analyze. Here,
descriptor functions are proposed as a general, metric latent space for atomic structures, ideal for use in
large-scale simulations. Descriptors can regress a broad range of properties, including character-dependent
dislocation densities, stress states, or radial distribution functions. A vector autoregressive model can
generate trajectories over yield points, resample from new initial conditions and forecast trajectory futures.
A forecast confidence, essential for practical application, is derived by propagating forecasts through the
Mahalanobis outlier distance, providing a powerful tool to assess coarse-grained models. Application to
nanoparticles and yielding of nanoscale dislocation networks confirms low uncertainty forecasts are
accurate and resampling allows for the propagation of smooth property distributions. Yielding is associated
with a collapse in the intrinsic dimension of the descriptor manifold, which is discussed in relation to the
yield surface.
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Introduction.—Materials evolve via complex, nonintui-
tive atomic mechanisms spanning a wide range of time and
length scales [1,2]. Atomic simulations (MD) with empiri-
cal force fields offer exceptional insight, but although
spatial decomposition schemes give excellent (weak) par-
allel scaling with system size [3], serial time integration
limits trajectory duration, irrespective of available process-
ors [4]. The ubiquity yet high cost of MD means develop-
ment of predictive techniques to coarse grain (CG) in space
or time is an active research area [2,5–9]. Resolving
material defects requires large system sizes, necessitating
efficient and scalable CG techniques. While many struc-
tural analysis tools exist [10–15], none provide generic
compression of atomic data with a clear metric for
similarity or diversity, nor is it clear a priori how to
select CG properties, leading to massive storage require-
ments at scale [16,17]. A further challenge is that
simulations of materials are typically nonequilibrium
and exhibit, in part due to timescale limitations, partially
disordered structures with a dense kinetic spectrum and an
unknown steady state, often with external driving [18–20].
To harness modern parallel computers there is thus a
recognized need to resample sparse simulation data and to
forecast simulation futures, both for physical insight and
to maximize the information yield of additional computa-
tional effort [4,21–25].
However, the complexities of material deformation limit

the applicability of current CG and acceleration schemes,
which require identification of a clear timescale separation
[26] to allow parallel time accumulation [2,4,9,21,26–29]
or the design of low rank (typically 1–4) collective
variables (CV) which can be used to bias dynamics
[5,8,30–34]. Despite many recent advances [8,35,36]

general CVs for extended defects remain elusive [34,36],
instead requiring specialized simulation setups with only a
few active mechanisms such as nucleation [8] or the
migration of isolated defects [34,35]. Exploring unseen
regions of configuration space is known to be uncontrolled
as low rank CVs may not remain descriptive [37]. These
issues extend to the powerful postmortem analysis tools
[6,38–42], which learn collective variables that obey a
discrete state Markov model in order to identify kinetically
important configurations with implied transition time-
scales. While all-atom [43–46] or coarse-beaded [47]
generative models may provide a route for accelerated
time stepping, they are currently only competitive to direct
time integration for fairly small equilibrium systems with a
static or slowly varying bonding topology, and so cannot be
applied to large-scale simulations of material deformation
where a highly transient, heterogeneous atomic connectiv-
ity is fundamental.
In this Letter, atomic descriptor functions [48–52] are

proposed as an efficient, general, and uncertainty-aware
coarse-graining approach, mapping atomic positions
X∈RN×3 to a global vector D̄∈R∼100, Eq. (1). The main
results are that (i) descriptors can classify and regress a
remarkable range of structural properties (see figures) and
permit a data-driven model extrapolation measure [53],
transferring advances in active learning [54–56] to atomic
CG. This generality means CG targets need not be specified
a priori, giving huge compression in storage and efficien-
cies in analysis at scale. (ii) Descriptor trajectories can be
efficiently resampled and forecasted via a vector autore-
gressive (VAR) model [57], with, crucially, a robust
forecast uncertainty derived from the descriptor outlier
measure (5). This allows rapid assessment of when
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forecasts can be trusted or when additional training is
needed, essential for practical usage but typically missing
in existing schemes. The approach is applied to analyze and
forecast systems essentially untreatable with existing meth-
ods, the annealing of large nanoparticles, and yielding of
nanoscale dislocation networks under cyclic shear and
uniaxial tension [17]. The intrinsic dimension [58] of the
descriptor manifold is shown to collapse on yielding, which
is discussed in relation to the yield surface.
Descriptor coarse graining.—Descriptors [56,59–61]

map atomic coordinatesX∈RN×3 to DðXÞ∈RN×D, where
each element ½DðXÞ�ij takes the local atomic environment
of an atom i as input and returns a permutation-invariant
scalar, vector, or tensor depending on the regression target
(e.g., energies, forces) [62,63]). Descriptors which approxi-
mate a many-body atomic basis [48–52] have found use in
linear estimators Ô ≃ΘO · Dþ Θ0

O of some target observ-
able OðXÞ, where ΘO ∈RD and Θ0

O ∈R are parameters.
For O ¼ E, the atomic potential energy, these can reach
state of the art accuracy [60,63,64], often with lower
computational cost and simpler fitting [48–52]. The first
main result of this Letter is that linear estimators can
capture essentially any structural property which could be
of relevance to a coarse-grained model. The widely used [3]
bSO(4) descriptors [3,48,50,64] are used, detailed in the
Supplemental Material (SM) [65], summing over all atoms
to give the global descriptors

D̄¼
X

i

Di∈RD; V̄¼
X

i

Xi⊗∇XDi∈RD×3×3; ð1Þ

where⊗ is the outer (dyadic) product [68]. Figure 1 shows
linear estimators

ÔðD̄Þ ¼ ΘO · D̄þ Θ0
O; ð2Þ

applied to dislocation networks in aluminum [65], accu-
rately capturing a broad range of properties including
dislocation junction densities, character-dependent line
densities, and crystal structure content. Similar results
were found for the nanoparticle ensemble and a range of
dislocated solids in fcc and bcc materials. Dislocation
properties were extracted with OVITO-DXA [15] which
has some intrinsic noise due to the discretization param-
eters. It is also possible to capture the radial distribution
function (RDF) gðrÞ by estimating coefficients âlðDÞ of a
basis expansion gðrÞ≡P

l alulðrÞ, as shown in Fig. 2. As
found in previous work targeting vibrational entropies
[69,70], all predictions were stable under widely varying
test and train ratios and truncation of training data range.
Matrix-valued observables such as the stress OðXÞ ¼
σ ∈R3×3 can be estimated by building equivariant estima-
tors with V̄; the simplest (l ¼ 0 [63]) example is simply
ÔðD̄Þ ¼ ΘO · V̄ ∈R3×3. Examples for the nonscalar shear
stress σxy are shown in Fig. 1 and the SM [65]. However, in
the following only D̄ is used for forecasting, targeting the
scalar pressure TrðσÞ, as model parameters are scalars and
D̄ has a metric distance [48].
While (2) is trained on the global descriptor signal (1),

spatial dependence will be required as the simulation
volume increases, achieved by averaging over atoms in
some voxel discretization. Future work will investigate this
voxelized signal and the constraints required to preserve
dislocation topology in forecasts.

FIG. 1. Coarse graining of dislocation networks in Al under
cyclic shear, detailed in the SM [65]. Left: global descriptor
vectors D̄ (1) are stored every 1–10 ps and positions X every
100–500 ps. fX; D̄g data is used to train estimators ÔðD̄Þ of
observables OðXÞ and a VAR forecaster (3). (a)–(f) O vs Ô from
over 20 targets, including (d) dislocation junctions and total
length of (e) screw or (f) h112i=6 dislocations. Nonscalar (a) σxy,
estimated with D̄ ⊕ V̄ [65]. See also gðrÞ in Fig. 2.

FIG. 2. Annealing of Pt nanoparticles. (a) Representative struc-
ture at 0 ns and 11 ns. (b) The average RDF gðrÞ and the corres-
ponding descriptor estimation [65] gðr; D̄Þ. (c)–(h) Ensemble
data with M ¼ 60, τtr ¼ 0.5, 1.0, 1.5 ns, training starting at
t ¼ 1 ns (left to right, red shade). Mean is the solid line,
with standard deviation as bands. Black: MD data. Orange:
VAR forecasts from 1 ns. Blue: VAR forecast with epistemic
errors. (c)–(e) Potential energy change from 1 ns mean.
(f)–(h) Mahalanobis distances, MD: MðDtÞ, Eq. (4); forecasts:
MðtÞ, Eq. (5). The theoretical lower bounds M0 (red dash) and
Mσ (purple dash) are also shown.
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The accuracy and scope of (2) has particular relevance
for massively parallel workflows, as only D̄; V̄ need to be
stored to later extract almost any global observable of
interest a posteriori after training on a small database of
stored positions, offering massive data compression.
Unimodality and generation of descriptor data.—As the

descriptors have a metric distance, similar atomic structures
will be close in descriptor space. In addition, their dis-
tribution in sufficiently high dimensions can be expected to
be unimodal, routinely invoked in active learning schemes
[54,55] and more recently in the analysis of defect
structures [56]. Evidence for nanoparticle and dislocation
ensembles is provided in the SM [65]. It is then simple to
generate plausible descriptor vectors by fitting and sam-
pling a multivariate normal distribution N ðμ;ΣÞ to the
descriptor dataset. An example of this is shown below in
Fig. 3, where the observed descriptor initial conditions are
densely interpolated, allowing the evolution of observable
distributions to be monitored.
Resampling and forecasting of descriptor trajectories.—

At regular intervals tn ¼ nδτ, δτ ≃ 10 ps, a “snapshot” is
taken by time averaging X̄n ¼ τ−1D

R
τ̄
0 Xðtn þ tÞdt over a

period τ̄ ≃ 20–50 fs to reduce noise from thermal fluctua-
tions [73], then calculating descriptor vectors D̄n ¼ D̄ðX̄nÞ.
A small database of positions X̄n is built by recording
1%–5% of snapshots, though positions could be selected
adaptively tomaximize training diversity. An ensemble ofM
simulations thus producesM discrete time trajectories fD̄ng,

which are used to train a P-state vector autoregressive
VAR(P) model [57,74]

D̄nþ1 ¼
Xp¼P−1

p¼0

TpD̄n−pþcþwn; hw⊤
nwmi¼Sδnm: ð3Þ

For P > 1 a Wold transformation [75] Zn ¼ 1 ⊕ D̄n… ⊕
D̄n−p ∈R1þPD̃ casts (3) as aMarkovianOrnstien-Uhlenbeck
equation [76]Znþ1 ¼ TZn þWn. Themaximum likelihood
estimator of T is simply the least squares solution, with S
determined from the residual covariance [74]. To minimize
generalization error, a bagging [77–79] approach was devel-
oped, applying Bayesian ridge regression [80] to random
overlapping subsets.Resultswere stable under 10–40 subsets
each with 10%–40% coverage, giving epistemic uncertain-
ties δT; δS from the covariance across subsets. Training is
robust and requires only a fewCPUminutes, a key advantage
over (RNN and LSTM) neural networks [81,82] or neural
differential equations [83] which require significant resour-
ces, regularization, and correction schemes [47], and limited
in practice to data dimension D̃ < 10 [83,84]. A Chapman-
Komologorov test [6] for the transfer matrixT is provided in
the SM [65], but in practice the light computational demand
also permits a convergence test of model architecture by
increasing P [65].
Deriving a forecast uncertainty.—Practical application

of (3) requires a robust measure of forecast uncertainty
[4,21–25], which should be larger for configurations
further from the training data independent of epistemic
errors. This is particularly relevant to the nonstationary
dynamics of material deformation. As uncertainty to
previously unseen macroscopic changes is clearly not
quantifiable [21], the following bound is conditional on
the simulation ensemble remaining unimodal and not
undergoing macroscopic changes. Many extrapolation
grade estimators have been developed for active learning
of energy models [54,56,58,64,85]; here, the Mahalanobis
outlier distance [53] is used for the unimodal descriptor
distribution [56,65]. With training data mean μtr and
covariance Σtr estimated via a shrinkage estimator [86],
the squared Mahalanobis distance reads

MðD̄Þ ¼ ½D̄ − μtr�Σ−1
tr ½D − μtr�=D̃: ð4Þ

Importantly, (4) is independent of the VAR(P) forecast
model (3); points drawn from a low density region of ρtr
will have a large Mahalanobis distance, even if epistemic
uncertainties δT are small. At long forecasting times, (3)
will reach its high dimensional steady state [65], with
hMi constant. However, model parameters cannot be
assumed static, with a time dependence bounded from
below by 1=τM ¼ 1=ðMτtrÞ [87], whereM is the ensemble
size and τtr training duration. This drift can be estimated
by propagating epistemic uncertainty in the steady state to

FIG. 3. Yielding of Al under uniaxial tension. Colors follow
Fig. 2. Forecasts are from 0.2 ns, with τtr ¼ 1.2 ns and P ¼ 5.
(a) Pressure, (b) h112i=6 dislocation density, and (c) amorphous
content. (d) Mahalanobis distance. (e)–(h) Trajectory resampling
from 0.3 ns (preyield), with 100× larger ensemble. (i) PCA
analysis of the ensemble mean hD̄i, clearly showing a localization
on yield. Individual trajectories shown as histogram in grayscale.
(j) ID of the descriptor manifold, estimated via TwoNN [71] and
DANCo [72]. Both show a collapse on yielding but remain above
the Von Mises lower bound.
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an uncertainty σ2M in MðD̄Þ, which should be accumu-
lated [65], leading to an additional linear growth in (4) of

MðtnÞ¼ hMðD̄nÞiþMσðtnÞ; MσðtnÞ≥M0ðtnÞ; ð5Þ

where MσðtÞ ¼ σ2Mt=δτ and M0ðtÞ ¼ t=τM. Equation (5)
is the main theoretical result of this Letter, an uncertainty
metric for forecasting via (3). An approximate parallel
efficiency is implied by η ¼ τpred=ðMτtrÞ, whereMðτpredÞ≡
M0ðMτtrÞ ¼ 2, giving η ¼ 1 when MðtnÞ ¼ M0ðtÞ.
Annealing of Pt Nanoparticles.—Metallic nanoparticles

are important functional materials for catalysis; 50–150
atom clusters have been extensively studied in simulations
[1,39,40,88], but for large sizes and high temperatures the
landscape of energy minimia is vast and insufficiently
metastable for current acceleration methods [40]. The
current application to M ¼ 60 4000-atom EAM-Pt [89]
nanoparticles at 900 K is thus out of scope for existing
methods.
The initial structure was formed by quenching from the

liquid state and annealing for 100 ps to give a highly
disordered but predominantly fcc structure (cFCC ≃ 0.5).
Descriptor trajectories were extracted every 1.5 ps, with a
full structural analysis undertaken every 100 ps, though the
dataset was sparsified by taking δτ ¼ 15 ps and removing
intermediate snapshots. Autoregressive models (3) were
constructed with P ¼ 1–3 and τtr ¼ 0.5, 1.0, or 1.5 ns, with
P ¼ 1 shown. Generated trajectories had initial conditions
from the start of the training data, to both resample then
forecast observed trajectories. Figure 2 displays the ensem-
ble simulation data, model predictions, and epistemic
errors for the formation energy, the RDF gðrÞ, and the
Mahalanobis uncertainty (5). The RDF reflects the signifi-
cant growth in FCC crystal structure, as can also be directly
extracted through estimation of cFCC. MD data usedMðDÞ,
Eq. (4), which closely follows the theoretical lower bound
MσðtÞ. While forecasts improve with training data,
crucially, the magnitude of MðD̄; tÞ can independently
confirm their reliability.
Yielding of Al under uniaxial tension.—Dislocations

carry plastic deformation, forming dense networks under
irradiation [20] or extended loading [90]; understanding
network evolution remains a grand challenge of physics and
engineering [17,91,92]. Atomic simulations continue to
discover mechanisms even in model systems [92], in part
due to the difficulty in analyzing atomic data [36]. An
ensemble of M ¼ 60 dense dislocation networks were
formed in an embedded atom method (EAM) model of Al
[93] by creating simulation boxes of around 1.5 × 105 atoms,
orientated to ½101̄�; ½111�; ½12̄1�, with populations of inter-
stitial loops with density ρdis ∈ ½1011; 1013� cm−2. Uniaxial
tension was applied at a rate ϵ̇xx ¼ 1 × 108 s−1 along ½101̄�,
allowing other supercell dimensions to relax [17]. The SM
[65] shows application to cyclic shear loading.While typical
in MD [17,92], the small system sizes and large strain rates

suppress correlations from long-range elastic interactions
and the role of e.g., thermally activated mechanisms which
will clearly influence network evolution and thus yield
behavior. Futureworkwill use spatially dependent descriptor
signals from voxelization (discussed above) to find trends in
how dislocation network evolution depends on system size,
dislocation density, and loading conditions, required to con-
nect such atomic simulations to the deformation of real micro-
structures. The results are summarized in Figs. 3(a)–3(d),
using the linear estimators (2). Increasing τtr decreased error
and uncertainty, with optimal results found using P ¼ 5 [65].
Training only on preyield structures led to unstable forecasts
as yield is characterized by a qualitative change in the
descriptormanifold as detailed below.MðD̄; tÞ alsodiverged
at the yield point, clearly indicating that more training data
is required. This again demonstrates the utility and critical
importance of a forecast uncertainty to assess data-driven
predictions. However, accurate forecasting of structural
transitions only frompretransition data remains an important
topic for future research. Resampling allows for ensembles
to be increased by orders of magnitude for negligible
CPU effort, giving the smooth distributions shown in
Figs. 3(e)–3(h). Initial descriptor states were generated as
described above from ρtr ≃N ðμ0;Σ0Þ, fit from the descrip-
tor ensemble at times 0.3–0.31 ns.
The forecasted ensemble captures multiple important

structural evolutions that, while known for this well-studied
system [17], confirm the accuracy of the VAR approach.
Forecasts correctly predict the growth of amorphous atomic
environments due to defect production under continued
loading [94], the expected sharp peak in hexagonal close
packed (HCP) content at yield, accompanied by a growth,
peak, then steady state in the number of dislocation
junctions (see SM [65]). Distributions can tighten or widen,
here indicating the evolution in dislocation character—
initial populations of h100i=3Hirth dislocation loops decay
to a tight distribution close to zero upon loading, accom-
panied by an emergence of a broad, stable distribution of
h112i=6 dislocation lines that carry the plastic flow [17].
The joint stability of junctions, dislocation density, and
stress is consistent with a Kocks-Mecking steady state [95].
The global descriptor signal ¯̄D can classify yielding with
minimal training data, see [65]; Fig. 3(i) shows how the
ensemble average h ¯̄Di clearly localizes postyield.
Models for yielding invoke the concept of a yield surface

in 6D stress space [96], which for metallic systems is
typically the Von Mises yield surface, isosurfaces of the J2
invariant with intrinsic dimension (ID) [58,72] of 2.
Yielding is thus expected to be accompanied by a drop
in the ID of the stress trajectory; furthermore, as descriptors
can perfectly predict stress, their ID is an upper bound to
the stress ID. Two empirical estimators [71,72,97], which
typically underestimate [72], were applied to the full
D̄ ⊕ V̄ dataset. Figure 3(j) shows both ID estimates
collapse from 5–7 to 2–3 on yield, consistent with the
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Von Mises lower bound of 2. While larger-scale studies are
essential, this suggests the existence of a generalized yield
manifold, which could allow for data-driven construction of
much richer structure-property relationships.
Conclusions.—This Letter has promoted descriptors as a

general, uncertainty aware coarse-grained representation of
atomic structures ideal for analysis, resampling, and fore-
casting. The descriptor manifold holds promise for future
research on structural transitions such as yielding, along-
side the use of forecasting in resource allocation [4,21–25]
and extension to a spatially dependent, fully equivarant
descriptor signal to capture long-range correlations.
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