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It is well known that two-dimensional (2D) bosons in homogeneous space cannot undergo real Bose-
Einstein condensation, and the superfluid to normal phase transition is Berezinskii-Kosterlitz-Thouless
(BKT) type, associated with vortex–antivortex pair unbinding. Here we point out a 2D bosonic system
whose low energy physics goes beyond conventional paradigm of 2D homogeneous bosons, i.e., intralayer
excitons in monolayer transition metal dichalcogenides. With intrinsic valley-orbit coupling and valley
Zeeman energy, exciton dispersion becomes linear at small momentum, giving rise to a series of novel
features. The critical temperature of Bose-Einstein condensation of these excitons is nonzero, suggesting
true long-range order in 2D homogeneous system. The dispersion of Goldstone mode at long wavelength
has the form εðqÞ ∼ ffiffiffi

q
p

, in contrast to conventional linear phonon spectrum. The vortex energy deviates
from the usual logarithmic form with respect to system size, but instead has an additional linear term.
Superfluid to normal phase transition is no longer BKT type for system size beyond a characteristic scale,
without discontinuous jump in superfluid density. With the recent experimental progress on exciton fluid at
thermal equilibrium in monolayer semiconductors, our work points out an experimentally accessible
system to search for unconventional 2D superfluids beyond BKT paradigm.
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In two-dimensional (2D) homogeneous systems, it is
well known that continuous symmetry cannot be broken
spontaneously according to Mermin-Wagner theorem [1,2],
and there is no true long-range order. As a special example,
Bose-Einstein condensation (BEC) critical temperature in
2D is zero. Nevertheless, superfluid is still possible at finite
temperature, and the transition from superfluid to normal
phase is described by the Berezinskii-Kosterlitz-Thouless
(BKT) theory [3,4], where the underlying mechanism is the
vortex–antivortex pair unbinding at high temperature. This
generic paradigm is successful in the description of a
variety of 2D superfluids, including liquid helium films [5],
superconductors [6], cold atomic gases [7,8], exciton-
polariton condensates [9], and dipolar excitons [10].
Generically, for a 2D bosonic system, the nature of low

temperature phases depends crucially on the density of
states. Deviation from homogeneous space or parabolic
dispersion may lead to superfluids beyond the conventional
paradigm. For example, when ultracold bosonic atoms are
confined in a harmonic trap, the BEC critical temperature is
nonzero [11]. Similar examples include bosons confined on
the surface of a sphere, where a finite BEC critical
temperature also exists due to finite size effect [12]. On
the other hand, for homogeneous bosons with quartic

dispersion realized at the transition point of spin-orbit
coupled gases, BKT transition temperature vanishes and
the low temperature phase is characterized by an algebraic
order [13]. This is an interesting example of enhanced low
energy fluctuations brought by increased density of states.
The contrary case, i.e., interacting bosons with single-
particle dispersion ϵðkÞ ∼ kν (ν < 2) in realistic experimen-
tal systems are still lacking. This type of system is of
fundamental importance and interesting, as one of the three
exhaustive cases of an isotropic 2D bosonic system in
homogeneous space, i.e., ν < 2, ν ¼ 2, and ν > 2. In a
word, 2D homogeneous bosons beyond the conventional
paradigm are quite rare and highly interesting, and will
surely enrich our understanding of such fundamental
concepts as BEC and superfluidity.
In recent years, there has been growing interest in the

realization of exciton condensation in bilayer 2D materials
[14–25], such as transition metal dichalcogenide (TMD).
Besides the long-sought interlayer exciton condensation in
heterobilayers, the possibility of intralayer exciton con-
densation in monolayer TMD cannot be excluded either
[26], despite of its relatively short lifetime. In particular,
significant experimental progress has been achieved in
the exciton fluid at thermal equilibrium in monolayer
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TMD [27], which paves the way towards the realization of
exciton superfluid in this system.
Here we point out that in the system of monolayer TMD,

intralayer exciton with linear dispersion [28,29] provides
another example beyond conventional paradigm of super-
fluids. Note that system anisotropy can lead to interesting
anisotropic superfluids in 2D materials [30–32], also
beyond the conventional paradigm of isotropic superfluids,
but here we only consider the isotropic superfluids. The
center-of-mass motion of intralayer exciton in monolayer
TMD features intrinsic valley-orbit coupling [28,29], origi-
nating from electron-hole exchange interaction. With addi-
tional valley Zeeman energy introduced by either magnetic
field or valley-selective optical Stark effect, the dispersion
of intralayer exciton at lower branch becomes linear [see
Fig. 1(b)]. We will reveal that this special dispersion
endows intralayer excitons with a variety of novel features
in low energy physics. Our main findings include the
following: (i) With a valley Zeeman energy, the BEC
critical temperature of this 2D homogeneous system is
nonzero and exhibits rapid increase with the field strength.
(ii) The Bogoliubov excitation spectrum of this exciton
condensate shows εðqÞ ∼ ffiffiffi

q
p

behavior at long wavelength
in the presence of valley Zeeman energy, which is an usual
form of gapless Goldstone mode, in contrast to conven-
tional phonon excitation. (iii) The vortex energy deviates
from logarithmic form with respect to system size, resulting
in a non-BKT-type phase transition for large system size.
There exists a characteristic system size, beyond which the
superfluid to normal phase transition evolves from BKT
type to 3D-like without discontinuous jump in superfluid
density. This crossover can also be observed in a single
system by tuning the magnitude of valley Zeeman energy.

(iv) With the increase of temperature, the system undergoes
a two-step phase transition, first from a BEC with long-
range order to a superfluid with quasi-long-range order, and
then to a normal phase. These novel phases can be
experimentally detected by measuring the spatial and
temporal coherence of emitted photons by excitons.
Monolayer exciton dispersion.—There are two inequi-

valent valleys in the Brillouin zone corner of monolayer
TMD, denoted as �K valley, respectively. Valley excitons
in monolayer TMD behave as a pseudospin-1=2 bosonic
system, whose valley pseudospin is coupled with center-of-
mass momentum of excitons [28,29], giving rise to the
valley-orbit coupling. The effective Hamiltonian describing
the center-of-mass motion of intralayer excitons with
valley-orbit coupling reads [28,29,35–38]

Ĥ0 ¼
ℏ2Q2

2m
þ AQþ AQ cosð2θQÞσx þ AQ sinð2θQÞσy

þ δσz: ð1Þ

Here Q is the center-of-mass momentum of exciton with
magnitude Q ¼ jQj and angle θQ, m ≈ 1.1m0 is exciton
effectivemass, σi (i ¼ x, y, z) are the Pauli matrices of valley
pseudospin, and A ≈ 0.9 eV · Å is the valley-orbit coupling
strength [29], related with electron-hole exchange interac-
tion. With the exchange interaction modeled by the screened
Keldysh potential [35,37], which gives a good description of
the exciton Rydberg series in monolayer TMD [39,40],
the AQ term is an approximation of the more accurate
AQ=ð1þ r0QÞ term, where both A and the screening length
r0 depend on the effective dielectric constant ϵd, determined
by surrounding environment. Unless otherwise specified, the
value ofA adopted here corresponds to a free-standing TMD
monolayer with r0 neglected, realizablewith TMDplaced on
top of circular holes prepatterned onSiO2 substrate, using the
experimental setup inRef. [41]. ForTMDplaced on substrate
materials, the screening will reduce the value of A and hence
modifies the quantitative results such as the critical temper-
ature calculated below (see Fig. 2 and Ref. [42]). We also
introduce a δσz term, known as the valley Zeeman energy,
with magnitude δ tunable by applying a magnetic field
[45,46] or utilizing the valley-selective optical Stark effect
[47,48]. The noninteracting dispersion has two branches,
given by ξ�ðQÞ ¼ ℏ2Q2=2mþ AQ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2Q2 þ δ2

p
, as

shown in Figs. 1(a) and 1(b). For finite δ, the lower branch
of dispersion at small momentum features a linear spectrum,
distinct from usual parabolic dispersion and brings dramatic
change to low energy properties of this system. The range of
linear dispersion defines a characteristic momentum Qc, at
which the parabolic and linear terms are comparable in
weight, and corresponds to a characteristic system size
Lc ¼ 1=Qc, both shown in Fig. 3(b).
Noninteracting BEC critical temperature.—In the

absence of valley Zeeman energy, the lower branch of
dispersion is parabolic, and obviously the BEC critical

(a) (b)

(c) (d)

FIG. 1. Single exciton dispersion for δ ¼ 0 (a) and δ ¼ 5 meV
(b). Bogoliubov excitation spectra of an exciton condensate at zero
momentum for δ ¼ 0 (c) and δ ¼ 5 meV (d). Inset of (d) shows the
enlarged plot of dispersion εðqÞ ∼ ffiffiffi

q
p

. All spectra in (a)–(d) have
rotational symmetry in the 2D Q or q plane. Unless otherwise
specified, the exciton-exciton interaction strengths chosen through-
out this paper are c1 ¼ 1.0 eV nm2, c2 ¼ 0.6 eV nm2, within the
same order of magnitude as the values calculated in Refs. [33,34].
n0 ¼ 9.9 × 109 cm−2.
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temperature vanishes, as in conventional 2D bosonic
systems. With valley Zeeman energy (δ ≠ 0), the lower
branch of dispersion is linear at small momentum, which
modifies the low energy density of states and renders a
BEC at finite temperature possible. We first neglect the
exciton-exciton interaction and calculate the noninteracting
condensation temperature TBEC through the relation,

n ¼ 1

ð2πÞ2
Z X

τ¼�

d2Q

eβ½ξτðQÞ−μðTÞ� − 1
; ð2Þ

where μ is the exciton chemical potential and β ¼ 1=kBT.
When T → TBEC, μ → −δ. The calculated relation between
TBEC and δ is shown in Fig. 2 for different exciton densities
in the two cases illustrated by the insets. Clearly, TBEC
monotonically increases with δ. For typical exciton density
n ¼ 1010–1012 cm−2 below the Mott limit (∼1013 cm−2)
[27], a moderate δ can lead to a relatively high TBEC on the
order of 10–100 K in the free-standing case. This is in stark
contrast to the conventional bosonic system with parabolic
dispersion, where TBEC ¼ 0 and only a quasicondensate
exists at finite temperature. Here one has a true 2D
condensate with long-range order, in homogeneous space.
As will be shown below, we find that the inclusion of
exciton-exciton interaction can further enhance the BEC
critical temperature.
Bogoliubov excitation spectrum.—The linear dispersion

of noninteracting exciton at small momentum also implies
unusual low energy excitations of exciton condensate.
Assuming that excitons condense at zero momentum state,
the low energy excitation can be calculated by the standard
Bogoliubov theory (see, for example, [51]). The mean-field
energy functional reads

E½Ψσ� ¼
Z

d2r

�
ðΨ�

↑;Ψ
�
↓Þ
��

ℏ2Q2

2m
þ AQ

�
þ δσz

þ AQ cosð2θQÞσx þ AQ sinð2θQÞσy
��Ψ↑

Ψ↓

�

þ c1
2
ðjΨ↑j4 þ jΨ↓j4Þ þ c2jΨ↑j2jΨ↓j2

�
; ð3Þ

where Ψσ is the condensate wave function for pseudospin
σ ¼ ↑;↓, corresponding to �K valley. At the qualitative
level, the exciton-exciton interaction is modelled as a
contact interaction, which is valid when the exciton density
is low [17,52], with c1 and c2 being exciton-exciton
interaction strengths between the same and different
pseudospin states, respectively.
Within the same framework, the condensate dynamics

can be described by the spinor Gross-Pitaevskii (GP)
equation,

iℏ
∂

∂t

�Ψ↑

Ψ↓

�
¼

�
H↑↑ HA

H�
A H↓↓

��Ψ↑

Ψ↓

�
; ð4Þ

where H↑↑ ¼ ℏ2Q2=2mþ AQþ δþ c1jΨ↑j2 þ c2jΨ↓j2,
H↓↓ ¼ ℏ2Q2=2mþ AQ − δþ c1jΨ↓j2 þ c2jΨ↑j2, and
HA ¼ AQ expð−2iθQÞ. In the presence of valley Zeeman
energy (δ > 0), minimization of the mean-field energy
functional [Eq. (3)] gives the wave function of an exciton
condensate at ground state. The ground state is found
to be ðjΨ↑j2; jΨ↓j2Þ ¼ n0½1=2 − δ=ðn0c1 − n0c2Þ; 1=2þ
δ=ðn0c1 − n0c2Þ� for 0 ≤ δ ≤ ðn0c1 − n0c2Þ=2, while
ðjΨ↑j2; jΨ↓j2Þ ¼ n0ð0; 1Þ for δ > ðn0c1 − n0c2Þ=2, with
n0 being the condensate density. For intralayer exciton,
c1 > c2 ensures that when δ ¼ 0, exciton densities in
two valleys are equal at ground state. With the estimated
values c1 ∼ 1.0 eV nm2, c2 ∼ 0.6 eV nm2 [33,34], and
typical exciton density n0 ¼ 1.0 × 1011 cm−2, the critical
δc ≡ ðn0c1 − n0c2Þ=2 ∼ 0.2 meV, beyond which the exci-
tons are completely valley polarized. In the following, we
consider the case δ > δc, which is readily accessible in
experiment with moderate magnetic field and greatly
simplifies the calculations. Results within the small range
0 < δ < δc are also calculated with the wave function
n0ð0; 1Þ as an approximation.
By expanding the wave function around the stationary

state, Ψ0
σ ¼ Ψσ þ δΨσ, and assuming the form of pertur-

bation δΨσ ¼ Ψσe−iμ=ℏ½uσðqÞe−iεðqÞt − v�σðqÞeiεðqÞt�, one
arrives at the Bogoliubov equation for the low energy
excitation,

M

0
BBB@

u↑
u↓
v↑
v↓

1
CCCA ¼ ε

0
BBB@

u↑
u↓
v↑
v↓

1
CCCA; ð5Þ

(b)(a)

FIG. 2. Change of noninteracting (interacting) BEC critical
temperature with δ shown in dashed (solid) line at different
exciton densities, in the free-standing case [41] (a) and for a TMD
placed on SiO2 substrate (b), with schematics shown in the insets.
Lines with same color correspond to same exciton densities. The
relations A ¼ 0.9 eV · Å=ϵ2d and r0 ¼ 33.875 Å=ϵd are used here
[42], with ϵd ¼ 1 in (a) and ϵd ¼ 2.5 in (b). The screened exciton-
exciton interaction constants are estimated by assuming the 1=ϵd
dependence. The maximum δ ¼ 7.5 meV corresponds to a
magnetic field of ∼65 T, achievable in existing experiments
[40,49,50].
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with

M ¼

0
BBB@

Hþ
1 Bþ

1 0 0

Bþ
2 Hþ

2 0 −n0c1
0 0 H−

1 B−
1

0 n0c1 B−
2 H−

2

1
CCCA: ð6Þ

Here H�
1 ¼ �ðℏ2q2=2mþ Aqþ n0c2 − μþ δÞ, H�

2 ¼
�ðℏ2q2=2mþ Aqþ 2n0c1 − μ − δÞ, B�

1 ¼ �Aðq2x − q2y −
2iqxqyÞ=q, B�

2 ¼ �Aðq2x − q2y þ 2iqxqyÞ=q, and μ ¼
−δþ n0c1. There are four groups of eigenvalues and
only the two whose corresponding eigenvectors satisfy
juσj2 − jvσj2 ¼ 1 are physical. The two branches of exci-
tations are

ε�ðqÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 −D

pq
; ð7Þ

where the expressions of A, B, C, and D are lengthy and
listed in the Supplemental Material [42]. As shown in
Figs. 1(c) and 1(d), for δ ¼ 0, ε−ðqÞ ∼ q at small q, while
ε−ðqÞ ∼ ffiffiffi

q
p

for δ > 0 [42], which is a new form of gapless
Goldstone mode unreported before.
Interacting BEC critical temperature.—With exciton-

exciton interaction, the dispersion of low energy excitation
is modified, and the resulting change of density of states also
affects the BEC critical temperature. We quantitatively
calculate the interacting critical temperature using the stan-
dard Hartree-Fock-Bogoliubov-Popov theory [53–55], by
solving self-consistently the total exciton density [42]

n ¼ n0 þ
X
τ¼�
σ¼↑;↓

Z
d2q
ð2πÞ2

�
jvτσðqÞj2 þ

juτσðqÞj2 þ jvτσðqÞj2
eετðqÞ=kBT − 1

�
;

ð8Þ

where the condensate density n0 also enters the excitation
spectrum and quasiparticle amplitudes uσðqÞ and vσðqÞ. By
calculating the dependence of n0 on T, one can extrapolate
to n0 → 0 and find the critical temperature TBEC with
interaction. As shown in Fig. 2, the BEC critical temper-
ature is enhanced by exciton-exciton interaction, which
can be qualitatively understood by considering that the
density of states is reduced at low energy and thereby the
condensate fraction at given temperature is increased
compared with noninteracting case.
Vortex energy.—In 2D bosonic systems, besides the

nonsingular excitations calculated above, there are also
singular topological excitations, i.e., vortices, which
play a decisive role in conventional BKT theory. In a
single-component condensate, the appearance of a free
vortex causes an energy increase Ev ∼mns=2

R
drv2ðrÞ≃

πℏ2ns=m lnðL=ζÞ, where vðrÞ is the magnitude of velocity,

L is the system size, ζ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2=2mnsc1

p
is the condensate

healing length, and ns is the superfluid density. This energy
function has the same form with increase of entropy
S ≃ 2kB lnðL=ζÞ associated with a free vortex, thereby
leading to the free energy change ΔF ¼ Ev − TS≃
ðπℏ2ns=m − 2kBTÞ lnðL=ζÞ, whose turning point gives
TSF. This is the case for parabolic particle dispersion,
and since intralayer exciton exhibits different dispersion
here, the vortex energy is modified, as well as the nature of
superfluid phase transition. In this pseudospin-1=2 system,
vortices generally have two components with respective
vorticity or circulation. Here we are interested in the case
of δ > δc, where the condensate at ground state is pseu-
dospin polarized, and thus we make the approximation
by considering a single-component vortex with modified
dispersion, i.e., ξ−ðQÞ ¼ ℏ2Q2=2mþAQ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2Q2 þ δ2

p
.

With similar argument, the vortex energy should be
modified as Ev ∼mns=2

R
drfv2ðrÞ þ ðmA=ℏÞvðrÞg∼

ðπℏ2ns=mÞ½α lnðL=ζÞ þ βðL=ζÞ�, where α and β are two
constants dependent on A and δ. In particular, β should
vanish at δ ¼ 0 and increase with δ. Similar form of vortex
energy is found in superconductors or two-component
BECs with Josephson coupling [56–60], and the additional
linear term βðL=ζÞ implies the breakdown of BKT theory
for large system size.
To be on a firmer ground, we adopt the trial wave

function of a vortex as in the single-component case, i.e.,
ψðrÞ ≈ ffiffiffiffiffi

ns
p

reiϕr=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 2

p
, where r is in units of ζ, being a

good fit to the numerical solution by Gross-Pitaevskii
equation [61]. We numerically calculate the kinetic energy
increase associated with the vortex within the new
dispersion, through Ev ≃

R
drψ�ðrÞĤkinψðrÞ, with Ĥkin

being the kinetic energy operator corresponding to
dispersion ξ−ðQÞ. The operation is carried out in momen-
tum space, bypassing the difficulty in expressing the valley-
orbit coupling term in coordinate space [42]. The obtained
dependence of Ev on L=ζ can be fitted well with the
relation above, which gives the specific value of α and β.
Within the experimentally feasible range of δ≲ 7.5 meV,
we find α ≈ 1 and the change of β with δ is shown in
Fig. 3(a). The condition of equal contribution from
these two terms α lnðL=ζÞ þ βðL=ζÞ also determines a
characteristic system size, in quantitative agreement with
Lc defined above.

(a) (b)

FIG. 3. (a) Change of coefficient β with δ. (b) Characteristic
system size Lc and momentum Qc as functions of δ.
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Superfluid to normal phase transition.—The linear term
of vortex energy will dominate for large system size, and
since this term grows faster than entropy, proliferation of
free vortices will always be suppressed even at high
temperature. This means the main contribution to the
depletion of superfluid density will come from nonsingular
excitations, including the Bogoliubov excitation with

ffiffiffi
q

p
dispersion, and vortex–antivortex bound pairs. These types
of excitations will lead to continuous decrease of superfluid
density with temperature, without discontinuous jump in
superfluid density at the phase transition point, similar to
3D case. So we conclude that, for system size beyond a
characteristic scale Lc, the superfluid phase transition is no
longer BKT type. On the other hand, for small system size
with large lower bound of momentum, the effect of linear
dispersion will be minor, and in this case we still expect a
BKT-type finite-size crossover. Note also that the character-
istic system size Lc depends on δ, and thus the two limiting
cases above can also be observed in a single system by
tuning δ. For small δ, Lc is on the order of μm, fully within
the range of sample size in current experiments.
We finally have enough information on the finite temper-

ature phase diagram of this system in δ − T plane, as shown
in Fig. 4. At δ ¼ 0, the BEC critical temperature is zero,
while the BKT transition temperature, given by the well-
known Nelson-Kosterlitz relation [62], is nonzero. With the
increase of δ, the BEC critical temperature increases and
the superfluid critical temperature should also increases,
since both free vortices and nonsingular excitations are
asymptotically suppressed. For large δ, where the free
vortices are completely suppressed for a given system size,
the superfluid density should continuously drop to zero,
similar to the 3D case, where the superfluid critical
temperature coincides with BEC critical temperature. So
both TBEC and TSF increase with δ, and asymptotically
approach each other. One immediately realizes that the
phase diagram consists of three different phases, i.e., BEC
phase with long-range order (also a superfluid), superfluid
phase with quasi-long-range order, and a trivial normal

phase. In other words, at finite δ, with the increase of
temperature, the system undergoes a two-step phase tran-
sition, first from BEC to a non-BEC superfluid, and then to
a normal phase. Note that the superfluid critical temper-
ature is only qualitatively demonstrated in Fig. 4, by
interpolation between two known limiting cases (δ ¼ 0
and large δ). A quantitative treatment of superfluid phase
transition, taking full account of vortex–antivortex pair
excitation induced screening, using methods such as
Monte Carlo simulation [63,64] will be postponed to a
future work.
Experimental observation.—We now comment on the

possible experimental realization of exciton superfluid in
monolayer TMD. The major obstacle is the short exciton
lifetime, whose magnitude relative to exciton thermal-
ization time determines whether thermal equilibrium can
be reached. Recently, it is reported experimentally that an
exciton fluid at thermal equilibrium in monolayer MoS2
was observed [27]. This important finding points to the
exciting possibilities for studying the exciton superfluid in
monolayer system and also demonstrates the experimental
relevance of our theoretical model. Using an experimental
setup similar to Ref. [41], our predictions can be readily
verified based on existing techniques. The three different
phases predicted in this work can be distinguished by
measuring the spatial and temporal coherence of emitted
photons, from which we can infer the decay behavior of
exciton correlation function. Similar techniques have been
used in previous experimental demonstration of BKT
transition in exciton-polariton condensate [9] and dipolar
excitons [10]. Note that in the presence of electron or hole
doping, the screened Coulomb interaction is better treated
by the Thomas-Fermi screening, which will turn the single
exciton dispersion from linear to the conventional parabolic
type [42], and hence should be avoided in experiments to
observe the phenomena predicted here.
In summary, we have studied the unusual properties of

exciton superfluid in monolayer TMD, possibly realizable
based on recent experimental progress [27], which is an
unique bosonic system beyond conventional paradigm.
With the valley-orbit coupling and valley Zeeman energy,
one can manipulate the dispersion of exciton center-of-
mass motion. The attainable linear dispersion in lower
branch brings a variety of exotic properties of excitons
associated with BEC and superfluidity. The BEC critical
temperature is nonzero, thereby realizing a true condensate
with long-range order in 2D homogeneous space. The form
of vortex energy has an additional linear term, giving rise to
superfluid transition different with BKT type. There is a
two-step phase transition with decrease of temperature
from a normal exciton phase: at Tc1 ¼ TSF the system first
enters a superfluid phase with quasi-long-range order,
and then at Tc2 ¼ TBEC it enters the BEC phase with both
long-range order and superfluid properties. These interest-
ing features can be possibly verified with the recent

Normal Phase

BEC + Superfluid

FIG. 4. Finite temperature phase diagram of intralayer excitons
with change of δ and T. Three different phases are shown in
different color. The upper solid (lower dashed) line denotes the
critical temperatureTSF (TBEC). Exciton densityn¼1.0×1011cm−2

is chosen here.
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experimental progress on the exciton fluid in this system,
by measuring spatial and temporal coherence of emitted
photons.
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