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We develop a general nonperturbative formalism and propose a specific scheme for maximally efficient
generation of biphoton states by parametric decay of single photons. We show that the well-known critical
coupling concept of integrated optics can be generalized to the nonlinear coupling of quantized photon
modes to describe the nonperturbative optimal regime of a single-photon nonlinearity and establish a
fundamental upper limit on the nonlinear generation efficiency of quantum-correlated photons, which
approaches unity for low enough absorption losses.
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Introduction.—Future quantum information systems will
inevitably rely on chip-scale integrated photonic circuits for
generation and control of quantum states of light [1–9].
Nonlinear cavities and waveguides supporting spontaneous
parametric down-conversion (SPDC) would be particularly
attractive for these applications due to their compatibility
with mature semiconductor technology [10]. The bottle-
neck in any such circuit is an extremely low efficiency of
nonlinear optical interactions between single-photon states
[11], which is usually mitigated by using strong classical
laser drive fields. While this is a viable strategy if one needs
just a source of single photon or biphoton states, more
complicated quantum information schemes require multi-
ple steps (gates) involving nonlinear couplings between
single photons. One way to overcome the low efficiency
challenge is to utilize strong coupling of single photon
states with resonant quantum emitters in a nanocavity
[12,13]. Another approach to single-photon nonlinearities
which we are going to propose and analyze here is to utilize
critical coupling [14], or rather its generalization to non-
linearly coupled systems and quantized fields. We will
show that this approach allows one to achieve efficient
generation of biphotons by parametric decay of single drive
photons in low-dissipation dielectric photonic circuits, even
at the optical nonlinearities typical for standard semi-
conductor materials. We demonstrate that the nonlinear
critical coupling establishes the fundamental upper limit on
the single-photon SPDC, which approaches unity for low
enough absorption losses.
For a specific illustration we consider a standard pho-

tonic circuit element which includes evanescent coupling of
quantized waveguide modes to the quantized modes of a
nonlinear ring cavity as in Fig. 1. The usual treatments
based on Heisenberg-Langevin or scattering matrix for-
malisms [10,15,16] assume a sufficiently weak nonlinearity

and some sort of the perturbation expansion to avoid
dealing with nonlinear operator-valued equations. Here,
by extending our recently proposed version of the stochas-
tic Schroedinger equation (SSE) formalism [17–19] to the
quantum field propagation problems, we were able to
consider strongly nonperturbative nonlinear regimes and
include the coupling of all quantized degrees of freedom to
their dissipative reservoirs. Simple analytical expressions
for the biphoton output fluxes are obtained in the practical
limit of low reservoir temperature as compared to the
optical photon energies.
Besides the particular application to the nonperturbative

SPDC process, our approach develops the critical coupling
theory in the fully quantum domain including propagation,

FIG. 1. A schematic of a waveguide evanescently coupled to a
nonlinear ring cavity made of a crystal with second order
nonlinearity χð2Þ. A single photon propagates as a wave packet
of waveguide modes with frequencies ωk and couples to the ring
cavity mode at frequency ωd with coupling coefficient κ. A drive
photon decays parametrically into signal and idler photons ω1

and ω2 which outcouple into the waveguide with outcoupling
coefficients κ1;2.
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dispersion, and dissipation, and fluctuation effects on the
same footing, and further generalizes it to include nonlinear
optical coupling. One can apply the same approach to other
nonlinear optical processes such as spontaneous four-wave
mixing of single-photon modes. Furthermore, studies of the
nonlinear mixing in dissipative systems can benefit from
recent developments in non-Hermitian nonlinear photonics,
especially in modal phase matching [20–22]. Thus, our
results bring together the burgeoning fields of quantum non-
linear optics, integrated photonics, and telecommunications.
Quantum dynamics in the single-photon nonlinear co-

upling.—We begin with expanding all fields into correspon-
ding spatial modes, i.e., (i) waveguide modesEkðr⊥Þeikz of a
waveguide segment with cross-sectional area S and length L,
where r⊥⊥z0, z0 is the unit vector along the z axis, and
(ii) cavity modes ENðrÞ of a ring resonator with cross sec-
tional areaSR and radiusR. The coupling betweenwaveguide
and cavity modes are maximized near the resonance, when
k ≈ ðN=RÞ andωk ≈ ωN ðωk;N are certain eigenfrequencies).
For boundary-value problems one would need to define the
waveguide with open ends and corresponding boundary
conditions on the facets. However, since we want to solve
the initial value problem, we can start from a certain field
wave packet at the initial moment of time inside the wave-
guide (say, near the boundary) and consider its evolution by
expanding it over the waveguide modes satisfying periodic
boundary conditions k ¼ 2πn, n ¼ 0;�1;�2… This makes
sense until the field goes outside the segment, but we can
always assume its length L to be large enough. All the results
will not depend on the value of L.
Proceeding to quantize the fields, one can define the

Schroedinger’s operator of the drive field in the wave-
guide as

Êwgðr⊥; zÞ ¼
X
k

½ĉkEkðr⊥Þeikz þ ĉ†kE
�
kðr⊥Þe−ikz�; ð1Þ

and similarly for the cavity field,

ÊR¼
X
N

½ĉNENðrÞþĉ†NE
�
NðrÞ�: ð2Þ

Here r is the position vector in the cavity. The normali-
zation given by Eqs. (S3) and (S4) in the Supplemental
Material [23] yields standard bosonic commutation rela-
tions for creation and annihilation operators, ½ĉ†i ; ĉj� ¼ δij.
The standard perturbative approach would be to solve for

the dynamics of the coupled fields in the Heisenberg’s
picture starting from the operator-valued Maxwell’s
equations for the evolution of nonlinearly coupled cavity
modes [24],

dĉN
dt

þ iωNĉN ¼ −
i

ℏω2
N

Z
V
E�

NðrÞ ̈P̂exðr; tÞd3r; ð3Þ

where P̂ex is an operator of the external polarization, which
includes the nonlinear response and any linear coupling

from the outside. Consider three cavity modes, N ¼ d, 1, 2,
for which the parametric down-conversion conditions
are satisfied: ωd ¼ ω1 þ ω2 and Nd ¼ N1 þ N2. Then
the positive-frequency ∝ e−iωt part of the external polari-
zation is

P̂ðþÞ
ex;d ¼ χ̂ð2Þðr;ωd ¼ ω1 þω2ÞE1ðrÞE2ðrÞĉ1ĉ2 þ P̂ðþÞ

lin ; ð4Þ

P̂ðþÞ
ex;1 ¼ χ̂ð2Þðr;ω1 ¼ ωd − ω2ÞEdðrÞE�

2ðrÞĉdĉ†2; ð5Þ

and similarly for P̂ex;2, where χ̂ð2Þ is a third-rank tensor of
the second-order susceptibility, with permutation properties
defined in the Supplemental Material [23]. The operator

P̂ðþÞ
lin describes linear excitation of the cavity mode at the

drive frequency by the waveguide field, which can be
parametrized as Z

V
E�

dP̂
ðþÞ
lin d3r ¼

X
k

Ikĉk: ð6Þ

Finding the excitation coefficients Ik is a boundary-value
problem of the classical electrodynamics. They can be
calculated for a specific geometry by any EM solver or
conveniently parametrized for any geometry as shown in
Sec. III of the Supplemental Material [23]. We can assume
that Ik reaches a maximum at the drive frequency ωd ¼ ωk
and decays with increasing detuning jωd − ωkj.
To quantify the SPDC process, we introduce the non-

linear overlap integral of the cavity modes with the second-
order nonlinearity distribution, integrated over the cavity
volume:

G ¼
Z
V
E�

1ðrÞχ̂ð2Þðr;ω1 ¼ ωd − ω2ÞEdðrÞE�
2ðrÞd3r: ð7Þ

For numerical estimates we will assume that the ring cavity
is made of a nonlinear material with a constant value of χð2Þ
for given field polarizations. The equations of motion
following from Eq. (3) are identical to the Heisenberg
equations of motion with the Hamiltonian

Ĥ ¼ ℏ
X

i¼d;1;2

ωi

�
ĉ†i ĉi þ

1

2

�
þ ℏ

X
k

ωk

�
ĉ†kĉk þ

1

2

�

− ðGĉdĉ†2ĉ†1 þ H:c:Þ −
X
k

ðIkĉkĉ†d þ H:c:Þ; ð8Þ

see Eqs. (S8)–(S11) in the Supplemental Material [23] for
their explicit form.
The next step would be to couple all fields to their

dissipative reservoirs and solve the resulting Heisenberg-
Langevin equations. However, this approach would lead to
operator-valued nonlinear equations [10,15] and generally
work only in the perturbative regime of low SPDC
probability. Instead, we developed the modified version
of the SSE formalism which allows us to find analytic
solutions for the nonperturbative quantum dynamics with
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an arbitrarily strong nonlinearity, determine the maximum
nonlinear efficiency, and predict the optimal parameters.
It is well known from the quantum jumps theory [15,25–

31] that if the master equation for the dynamics of an open
quantum system is represented in the Lindblad form,
ðdρ̂=dtÞ ¼ −ði=ℏÞ½Ĥ; ρ̂� þ L̂ðρ̂Þ, the Lindbladian can be
always written as L̂ðρ̂Þ ¼ −ði=ℏÞðĤðahÞρ̂ − ρ̂ĤðahÞ†Þ þ
δL̂ðρ̂Þ where ĤðahÞ is an anti-Hermitian operator. Then,
as we show in [17–19], the evolution of the system can be
equivalently described by solving the SSE

d
dt

jΨi ¼ −
i
ℏ
ðĤ þ ĤðahÞÞjΨi − i

ℏ
jRðtÞi; ð9Þ

where the noise vector satisfies jRðtÞihRðt0Þj ¼
ℏ2δL̂ðρ̂Þ

ρ̂⇒jΨihΨjδðt − t0Þ and the bar means averaging over

the reservoir statistics. This approach provides significant
analytical and numerical advantages by reducing the
effective number of degrees of freedom, especially at the
single-photon excitation level. For bosonic modes we have

ĤðahÞ ¼
X
j

− iℏ
μj
2

�
n̄Tωj

ĉjĉ
†
j þ ðn̄Tωj

þ 1Þĉ†j ĉj
�
; ð10Þ

δL̂ðρ̂Þ ¼
X

j¼d;1;2

μj
�
n̄Tωj

ĉ†j ρ̂ĉj þ ðn̄Tωj
þ 1Þĉjρ̂ĉ†j

�
; ð11Þ

where n̄Tωj
¼ �

eðℏωj=kBTÞ − 1
�−1. To get analytic results,

here we consider the case when the photon frequencies
are much higher than the thermal energy kBT, so that we
take n̄Tωj

→ 0 in Eqs. (10) and (11) and treat the relaxation
constants ðμ1;2=2Þ as the total field decay rates of the signal
and idler cavity modes which include the rate of absorption
in the cavity and the rate of cavity field outcoupling into the
waveguide: ðμ1;2=2Þ ¼ ðγ1;2=2Þ þ κ1;2. The outcoupling
rate of the drive cavity field back into the waveguide is
already included through the last term in the Hamiltonian
(8). There is reciprocity between in- and outcoupling rates
which we both denote as κ.
For a single-photon drive, the SSE can be solved by the

following state vector ansatz:

jΨi ¼
X
k

Ckj1ki
Y
k0≠k

j0k0 ij0dij01ij02i

þ Cd

Y
k

j0kij1dij01ij02i þ C12

Y
k

j0kij0dij11ij12i

þ C0

Y
k

j0kij0dij01ij02i; ð12Þ

which results in a set of linear equations for the probability
amplitudes,

dCk

dt
þ iωkCk ¼

i
ℏ
I�kCd ð13Þ

dCd

dt
þ
�
iωd þ

μd
2

�
Cd ¼

i
ℏ
G�C12 þ

i
ℏ

X
k

IkCk ð14Þ

dC12

dt
þ
�
iω1 þ iω2 þ

μ1
2
þ μ2

2

�
C12 ¼

i
ℏ
GCd: ð15Þ

Note that the noise vector components are neglected in the
equations for the excited state amplitudes due to the
assumption of low reservoir temperature. The noise term
must be kept in the equation for C0, but the latter equation
can be omitted since C0 is not present in other equations
and jC0j2 can be obtained from conservation of noise-
averaged norm of the wave vector, hΨjΨi ¼ 1 [17].
Furthermore, we dropped vacuum terms in the free field
Hamiltonian, since the results depend only on frequency
detunings.
Consider the initial condition corresponding to a single-

photon wave packet of spectral width Δω in the waveguide
and no photons in the cavity, i.e., Cdð0Þ ¼ C12ð0Þ ¼
C0ð0Þ ¼ 0, and Ckð0Þ ≠ 0. Let all Ckð0Þ are such that at
t ¼ 0 the field pulse is localized far enough from the
coupling region. Although Eqs. (13)–(15) look like an
initial-value problem, in Secs. IVand Vof the Supplemental
Material [23] we show how they include all propagation
and linear coupling effects, in particular, the critical
coupling regime.
Signal and idler photon fluxes from single-photon

SPDC.—Eqs. (13)–(15) are solved for C12ðtÞ with the help
of Laplace transforms and the convolution theorem in
Sec. VI of the Supplemental Material [23]. The result is

jC12ðtÞj2 ¼
jgj2jΩkdj2ωk¼ωd

jκΣp12 þ jgj2j2
�X

k

X
q

�
Ckð0ÞC�

qð0Þ
�
e−iðωk−ωqÞt þ e−iωktU�ðtÞ þ eiωqtUðtÞ��þ c:c:

	
; ð16Þ

where

UðtÞ ¼ e−ðiωdþκΣþp12
2

Þt


cosh ðθtÞ − κΣ þ p12

2θ
sinhðθtÞ

�
;

θ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðκΣ−p12Þ=2�2− jgj2

p
, p12 ¼ ðμ1=2Þþ ðμ2=2Þþω1þ

ω2−ωd, and κΣ ¼ ðμd=2Þ þ κ is the total decay rate of

the drive field in the cavity which includes its absorption,
diffraction, and outcoupling to the waveguide modes (see
Sec.Vof the SupplementalMaterial [23]).We also introduced
the notations ði=ℏÞIk ¼ Ωkd and ði=ℏÞG ¼ g. Then the
photon fluxes outcoupled from the cavity to the waveguide
at signal and idler frequenciesω1;2 are (in photons per second)
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Π1;2 ¼ 2κ1;2jC12ðtÞj2: ð17Þ

The expression (16) is still cumbersome, but it can be
easily evaluated numerically for a given spectrum Ckð0Þ of
the incident single-photon driving pulse, and its meaning
is transparent. The two terms containing UðtÞ describe
decaying or overdamped nonlinear Rabi oscillations
between the drive and signalþ idler photons, depending
on the interplay between the nonlinear coupling strength
and the combination of losses and detuning. Note that the
terms e−iðωk−ωqÞt, e−iωktU�ðtÞ and eiωqtUðtÞ are of the
same order of magnitude, but the last two terms descri-
bing the Rabi oscillations decay over the timescale
no longer than ∼κ−1Σ , whereas the remaining term
∝
P

k

P
q Ckð0ÞC�

qð0Þe−iðωk−ωqÞt þ c:c: describes the sig-
nal with a much longer duration ∼ð2π=ΔωÞ, or even an in-
finitely long noisy signal with correlation time ∼ð2π=ΔωÞ.
Therefore, for the drive pulse which is much longer than the
timescales of diffraction and absorption losses in the ring
cavity we can keep only this remaining term.
The unperturbed incident flux of the drive photons in the

waveguide is

Πwg ¼
υg
2L


X
k

X
q

Ckð0ÞC�
qð0Þe−iðωk−ωqÞt þ c:c:

�
; ð18Þ

where υg is the group velocity of the drive wave packet in
the waveguide. Note that in the limit of a large number of
modes within the width of the wave number spectrum Δk,
when ΔkL ≫ 2π, the value of Πwg does not depend on the
length of the quantization segment L. Consider the maxi-
mum flux in the middle of SPDC bandwidth at exact
frequency matching ω1 þ ω2 − ωd ¼ 0. Using also
jΩkdj2 ≃ 2κðυg=LÞ as shown in the Supplemental
Material [23], the resulting signal and idler fluxes are

Π1;2 ¼
8κ1;2κjgj2Πwg��

κ þ μd
2

��
κ1 þ κ2 þ γ1

2
þ γ2

2

�þ jgj2�2 : ð19Þ

This is a simple but very informative expression which
gives the universal dependence of signal and idler fluxes
from all relevant parameters, and includes all possible
regimes, such as perturbative (small jgj when one neglects
jgj2 in the denominator), nonperturbative (arbitrary jgj),
loss dominated, and nonlinear critical coupling (see below).
Moreover, using more general expressions from the
Supplemental Material [23] it can be generalized to the
situations of high reservoir temperatures, broadband and
ultrashort pulses, nonlinear Rabi oscillations, etc. All the
input parameters such as κ, g, κ1;2, μd, and γ1;2 can be
calculated separately, by solving the classical electrody-
namics problem with boundary conditions imposed by the
photonic circuit geometry. Therefore, the physics of quan-
tum nonlinear mixing is universal and decoupled from
specific experimental geometry.

Figures 2 and 3 illustrate some of these dependencies
for the signal flux normalized by the waveguide flux,
ðΠ1=ΠwgÞ, and assuming degenerate SPDC, ω1 ¼ ω2,
γ1 ¼ γ2, and κ1 ¼ κ2 in order to reduce the number of
parameters. The latter assumption can be easily lifted if
needed. The maximum possible signal flux in all figures is
of course equal to the incident waveguide flux, i.e.,
ðΠ1=ΠwgÞ ¼ 1, corresponding to one pair of signal and
idler photons per one photon at the drive frequency in the
waveguide. In agreement with energy conservation, this
maximum value is reached when the absorption losses of
all fields are much smaller than linear and nonlinear
coupling frequency scales. Figure 2(a) illustrates the
transition from the perturbative regime ∝ jgj2 at small g
to the nonperturbative regime of large g as g ¼ jgj changes
while keeping other parameters fixed. The maximum flux is
reached at

FIG. 2. The normalized flux of signal photons ðΠ1=ΠwgÞ (a) as
a function of the normalized nonlinear coupling strength g=gmax
for negligible absorption γ1;2 ¼ μd ¼ 0 (red line) and for
κ1;2 ¼ κ, γ1;2 ¼ μd ¼ 2κ (blue-dashed line); and (b) as a function
of the normalized linear coupling of the drive field ðκ=κmaxÞ for a
fixed g ¼ 4.1 × 108 sec−1 and κ ¼ κ1;2 ¼ g, without absorption
γ1;2 ¼ μd ¼ 0 (red line), and with absorption γ1;2 ¼ μd ¼ 2g
(blue-dashed line).

FIG. 3. The normalized flux of signal photons ðΠ1=ΠwgÞ as a
function of the normalized linear coupling strengths of the drive
and signal fields for γ1;2 ¼ μd ¼ g. Inset: the limit of zero losses,
when the flux depends only on the product κκ1.
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g2max ¼
�
κ þ μd

2

��
κ1 þ κ2 þ

γ1
2
þ γ2

2

�
: ð20Þ

This peak value of the flux is equal to one when absorption
losses are negligible (solid red curve), and decreases
quickly with increasing losses as is clear from Eq. (19)
and illustrated by the blue dashed curve.
Figure 2(b) shows the dependence of the signal flux from

the linear coupling strength κ between the waveguide and
the cavity at the drive frequency. The peak value of the
signal is reached at

κmax ¼
μd
2
þ jgj2
κ1 þ κ2 þ γ1

2
þ γ2

2

: ð21Þ

Clearly, this expression is the modification of the critical
coupling condition κ ¼ ðμd=2Þ derived in [14] for classical
fields and Supplemental Material [23] for the quantum
fields. The significant deviation from standard critical
coupling is possible for large enough values of the non-
linear coupling strength g. To get a specific numerical
estimate for the value of g, we consider an InGaP thin-film
microring resonator evanescently coupled to a straight
waveguide, similar to the type of a nanophotonic circuit
implemented in [9]. Taking the parameters consistent with
their devices: a 5 μm radius and 100 × 400 nm2 of the ring,
χð2Þ ¼ 220 pm=V for InGaP [32], drive wavelength of
750 nm and signal/idler wavelength of 1500 nm, we obtain
g ≃ 4.1 × 108 s−1. For the best possible performance the
absorption losses have to be smaller than this value, while
the coupling has to be tuned to the critical value (21). The
absorption losses for the devices reported in [9] were not
quite there yet, with about 1.5% nonlinearity to loss ratio,
which would lead to about 10−4 probability of biphoton
emission per one drive photon. To approach the theoretical
limit of a unity probability one needs a cavity Q factor of
∼106 or higher. In recent years, such Q factors have been
demonstrated in several kinds of high-χð2Þ semiconductor
microresonators [6,33].
Figure 3 shows the signal flux when the linear coupling

strengths of both the signal and the drive fields are allowed
to vary. The signal flux reaches its maximum value at the
optimal values of the coupling parameters, given by

κ2max ¼
μd
2γ1

g2 þ μ2d
4
; κ21max ¼

γ1
2μd

g2 þ μ2d
4
: ð22Þ

This is again the nonlinear critical coupling condition. The
maximum value of the normalized flux is given by

Π1 max

Πwg
¼ 2h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ μdγ1=g2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μdγ1=g2

p i
2
: ð23Þ

In the limit of negligible losses, the signal flux depends
only on the product of linear coupling parameters,

Π1

Πwg
¼ 8κκ1g2

ð2κκ1 þ g2Þ2 ; ð24Þ

and its maximum value is of course equal to 1; see the inset
to Fig. 3.
In conclusion, we developed a general nonperturbative

theory of second-order nonlinear interactions between
quantized field modes in dissipative photonic circuits
and proposed a specific realization of maximally efficient
SPDC at the single-photon level. Convenient analytic
expressions for the biphoton fluxes are obtained which
provide explicit dependence on all material and geometric
parameters and predict the existence of the nonlinear
critical coupling regime which establishes a fundamental
upper limit on the signal and idler fluxes for a single-photon
pump. A similar approach can be developed for biphoton
generation by a pair of drive photons in third-order non-
linear microresonators.
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