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Extending the Higgs sector of the standard model (SM) by just one additional Higgs doublet field leads
to the two-Higgs-doublet model (2HDM). In the type-I Z2-symmetric limit of the 2HDM, all the five new
physical Higgs states can be fairly light, Oð100Þ GeV or less, without being in conflict with current data
from the direct Higgs boson searches and the B-physics measurements. In this Letter, we establish that the
new neutral as well as the charged Higgs bosons in this model can all be simultaneously observable in the
multi-b final state. The statistical significance of the signature for each of these Higgs states, resulting from
the electroweak (EW) production of their pairs, can exceed 5σ at the 13 TeV high-luminosity Large Hadron
collider (HL-LHC). Since the parameter space configurations where this is achievable are precluded in the
other, more extensively pursued, 2HDM types, an experimental validation of our findings would be a clear
indication that the true underlying Higgs sector in nature is the type-I 2HDM.
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Introduction.—The existence of additional Higgs
bosons, besides the one discovered by the LHC [1,2]
(hereafter, denoted by Hobs), is predicted by most (if not
all) frameworks of new physics. Observation of a second
Higgs boson will thus provide firm evidence that the
underlying manifestation of the EW symmetry breaking
(EWSB) mechanism is a nonminimal one.
From a theoretical point of view, given the fact that the

Hobs belongs to a complex doublet field in the SM, any
additional Higgs field can be naturally expected to have the
same SUð2ÞL representation. Following this argument,
even the minimal bottom-up approach of augmenting the
SM with a second doublet Higgs field and assuming CP-
invariance yields a total of five physical Higgs states after
EWSB: two neutral scalars (h and H, with mh < mH), one
pseudoscalar (A), and a charged pair (H�). If both the
doublets Φ1 and Φ2 in this 2HDM couple to all the
fermions of the SM, they would cause flavor-changing
neutral currents (FCNCs) that contradict the experimental
results. To prevent these FCNCs, a Z2 symmetry can be
imposed [3,4], under which Φ1 → Φ1, Φ2 → −Φ2,

uiR → −uiR, diR → −diR, eiR → −eiR, so that all the quarks
and charged leptons (conventionally) couple only to theΦ2,
resulting in the so-called type-I 2HDM (see Refs. [5,6] for
detailed reviews).
By now, many studies [7–24] have established that the

additional Higgs states (when the Hobs is identified with
either the h or theH state) of the 2HDM can be individually
accessed at the LHC. Therefore, several searches for singly
produced neutral and charged Higgs bosons have been
carried out by the ATLAS and CMS Collaborations (see,
e.g., [25–32]), but they remain elusive thus far. Even if a
single state is eventually observed, the corresponding
measurements that will ensue will, however, not enable
one to ascertain which of the many possible extended
realizations of the Higgs mechanism is at work.
The majority of analyses, both phenomenological and

experimental ones, involving an electrically neutral multi-
Higgs final state, concentrate on QCD-induced production
modes, namely, gluon fusion and bb̄ annihilation. While
such gluon-initiated production is evidently highly domi-
nant in the SM, it is not necessarily so in new physics
models, owing to the nonstandard couplings of their new
Higgs bosons to the fermions and gauge bosons. In a
previous analysis [33] it was shown that the inclusive cross
sections for the qq̄ð0Þ-induced production, where q repre-
sents predominantly a u or d quark, of neutral multi-Higgs
final states can be larger than their QCD-induced
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production, over sizeable parameter space regions of the
Type-I 2HDM with standard hierarchy (Hobs ≡ h). The
charged final states can of course only be produced via EW
processes.
In this Letter, through a complete detector-level

Monte Carlo (MC) analysis, we concretely establish that
EW production can provide simultaneously visible signals
of all the three additional Higgs bosons of the type-I 2HDM
at the LHC with 3000 fb−1 integrated luminosity. The
model parameter space configurations where this is pos-
sible contain an A lighter than the Hobs, with the H and H�
not much heavier, and are therefore well motivated, in that
the entire Higgs spectrum lies at the EW scale. Our
signature channel, constituting of multiple b quarks, allows
a full reconstruction of the H, A, and H� masses. It implies
that the LHC can uniquely pin down (or definitively rule
out) the underlying EWSB mechanism as this (albeit
narrow) parameter space region of the Type-I 2HDM (or
at least as a low-energy manifestation of a grander
framework with a Higgs sector mimicking this model).
What makes our results all the more special is the fact that
such a particular Higgs boson mass spectrum is forbidden
in the Type-II 2HDM [34] (the realization aligning with
minimal supersymmetry).
The Letter is organized as follows. In Sec. II we very

briefly review the Type-I 2HDM and its parameter space
configurations relevant for multi-Higgs production, and
identify a benchmark point (BP) satisfying the most impor-
tant theoretical and experimental constraints. In Sec. III we
detail our MC analysis, and in Sec. IV we establish the
potential of the LHC to extract all the Higgs bosonmasses in
the model. We present our conclusions in Sec. V.
The Type-I 2HDM.—Higgs potential and parameters:

The most general potential of a CP-conserving 2HDM can
be written as

V ¼ m2
11Φ

†
1Φ1 þm2

22Φ
†
2Φ2 − ½m2

12Φ
†
1Φ2 þ H:c:�

þ λ1
2
ðΦ†

1Φ1Þ2 þ
λ2
2
ðΦ†
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�
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It is convenient to write the doublets Φ1 and Φ2, after
EWSB, in terms of their respective vacuum expectation
values (VEVs) v1 and v2, the Goldstone bosons G and G�
and the physical Higgs states as

Φ1 ¼
1ffiffiffi
2

p
� ffiffiffi

2
p ðGþcβ −HþsβÞ

v1 − hsα þHcα þ iðGcβ − AsβÞ

�
;

Φ2 ¼
1ffiffiffi
2

p
� ffiffiffi

2
p ðGþsβ þHþcβÞ

v2 þ hcα þHsα þ iðGsβ þ AcβÞ

�
; ð2Þ

where β≡ tan−1ðv2=v1Þ and α are the angles rotating the
CP-odd and the CP-even interaction states, respectively,

into physical Higgs states, with sx (cx) implying sinðxÞ
[cosðxÞ]. Using the tadpole conditions of the V, m2

11 and
m2

22 can be replaced by v1 and v2 (and, subsequently, by
tβ—short for tan β—and v≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v21 þ v22
p

¼ 246 GeV) as
the free parameters of the model. Furthermore, the physical
Higgs boson masses and the parameter sβ−α can be traded
in for λ1−5.
Multi-A production and benchmark scenarios: The

benefit of using the physical Higgs boson masses as input
parameters is that we can fix mh ¼ 125 GeV, so that our
analysis corresponds to the “standard hierarchy” scenario
with h ¼ Hobs and a heavier H. For this scenario, our
previous study [33] found that not only can the cross
section for the EW production of the HA pair be up to 2
orders of magnitude larger than the gg=bb-induced one, but
it also remains quite substantial for the subsequent states
AAA and AAZ. Evidently, this cross section is more
pronounced in parameter space regions where the H is
produced on-shell, with a mass just above the AA or AZ
decay threshold and a maximal corresponding branching
ratio (BR). The requirement of the couplings of the h to be
SM-like, as is the case for the Hobs, pushes the model into
the so-called alignment limit, where sβ−α → 1 [35]. In this
limit, the Hhh coupling is suppressed, unlike the HAA
coupling. TheHAZ coupling, which is proportional to sβ−α,
and hence the BRðH → AZÞ, is also naturally enhanced,
while the H → VV decays, even when available, are
suppressed.
In light of the above observations, our analysis pertains

to a smallmA of 70 GeV. For such a light A, bb̄ is by far the
dominant decay mode and the multi-Higgs states that we
are interested in here are thus the ones yielding at least 4b
quarks via intermediate As. Such states result from the EW
production of either a neutral pair of Higgs bosons, both
on-shell, as

AAA∶ qq̄ → Hð→ AAÞA → 4bþ X;

AAZ∶ qq̄ → Hð→ AZÞA → 4bþ X;

AAWW∶ qq̄ → Hþð→ AWÞH−ð→ AWÞ → 4bþ X;

or a charged pair, as

AAW∶ qq̄0 → H�ð→ AWÞA → 4bþ X;

AAAW∶ qq̄0 → H�ðH� → AWÞHð→ AAÞ → 4bþ X;

AAZW∶ qq̄0 → H�ðH� → AWÞHð→ AZÞ → 4bþ X:

Here theW and Z decay inclusively (i.e., both hadronically
and leptonically) and X can thus be any additional quarks
(including b quarks) and/or leptons.
In order to find model configurations with substantial

EW production cross sections for a representative value of
mA ¼ 70 GeV, we numerically scanned the remaining
parameters in the wide ranges

PHYSICAL REVIEW LETTERS 131, 231801 (2023)

231801-2



mH∶ ½2mA−250�GeV; mH�∶ ½100–300�GeV;
sβ−α∶ 0.9–1.0; m2

12∶ 0−m2
A sinβcosβ; tβ∶1–60;

using the 2HDMC-1.8.0 code [36]. One of the most
important constraints on the 2HDMs comes from the
measurements of the oblique parameters S, T, and U,
which in general forces mH� to lie close to mH and/or mA.
The 2HDMC code internally calculates the theoretical
predictions of these observables. In our scans, we required
them to lie within the 95% confidence level (CL) ellipsoid
based on the 2022 PDG values [37], S ¼ −0.01� 0.07 and
T ¼ 0.04� 0.06, with correlations ρST ¼ 0.92 for U ¼ 0.
2HDMC also checks each scanned point against theoretical
constraints such as vacuum stability, tree-level unitarity,
and perturbativity (jλij < 4π). We moreover calculated the
observable BRðB → XsγÞ using the SuperIso-v4.1
[38] program, and ensured that its prediction lied outside
the exclusion contour in the fmH� ; tβg plane derived in
[34,39] based on experimental results.
Finally, we required all the Higgs states in each scanned

point to satisfy the 95% CL constraints included in
HiggsBounds-v5.10.2 [40]. We additionally made
sure that the SM couplings of the hwere consistent with the
combined 2σ measurements for Hobs from the ATLAS and
CMS Collaborations [41] using HiggsSignals-
v2.6.2 [42–44]. From the successfully scanned param-
eter space points, we extracted a BP, for which the
BRðH → AAÞ is almost 1 (and hence BRðH → AZÞ is
strongly suppressed). Some specifics of this BP are given in
Table I.
Signal isolation.—The background events for the multi-

b final states that we consider here originate predominantly
from the QCD multijet and tt̄þ jets processes. In our
computation, we matched the multijet background up to
four jets and the tt̄ up to two jets. Our matched cross section
for the multijet background in the 5-flavor scheme at the

LHC with
ffiffiffi
s

p ¼ 13 TeV is 8.98 × 106 pb, with
NNPDF23_lo_as_0130 [46] parton distribution func-
tions (PDFs) and a matching scale of 67.5 GeV. The tt̄
production cross section is 833.9 pb, as calculated with the
Top++2.0 [47] program, assuming a top quark mass of
173.2 GeV. For our simulation we generated 2 × 108

multijet events and 107 tt̄ events. Other possible back-
ground processes include tt̄bb̄, tt̄þ V (where V ¼ Z=W),
V þ jets, ZZ and hZ, but we found them to be negligible
after the selections.
For our selected BP, we again used the

NNPDF23_lo_as_0130 PDF set to estimate the multi-
b signal events. We performed event-generation and parton
shower with MadGraph5_aMC@NLO [48,49] and
PYTHIA-8.2 [50,51], using the anti-kt algorithm [52]
with R ¼ 0.4 for jet reconstruction. For b tagging, we
used the pT-dependent efficiencies corresponding to the
“DeepCSV Medium” working point based on the

ffiffiffi
s

p ¼
13 TeV data from the CMS Collaboration [53]. We used
Delphes-3.4.2 [54] for event generation, which was
followed by analysis in the Root [55] framework. We
retained the default CMS jet energy scale in Delphes.
The primary selection cuts we applied for signal isolation
include: pT > 20 GeV and jηj < 2.5 for all the jets in any
reconstructed object. Further selections that we made for
each Higgs state are explained below.
Reconstruction of the A: (1) Since all the signal

processes contain at least two A’s, the events should contain
at least 4 b jets, a, b, c, and d, which can be resolved into
pairs 1 and 2. For this purpose we used a pairing algorithm
for the leading b jets to choose one combination out of the
possible three: ða; b; c; dÞ, ða; c; b; dÞ, and ða; d; b; cÞ,
which minimizes [56]

ΔR ¼ jðΔR1 − 0.8Þj þ jðΔR2 − 0.8Þj: ð3Þ

Here, for a given combination,

ΔR1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðηa − ηbÞ2 þ ðϕa − ϕbÞ2

q
;

ΔR2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðηc − ηdÞ2 þ ðϕc − ϕdÞ2

q
; ð4Þ

and offsetting each of these by 0.8 omits the b-jet pairings
with too large an overlap in the fη;ϕg space. This
algorithm is motivated by the idea that the b jets coming
from a resonance (presumably the A) are closer together
compared to the uncorrelated ones. (2) After the pairing, we
imposed an asymmetry cut,

ᾱ ¼ jm1 −m2j
m1 þm2

< 0.2; ð5Þ

where m1 and m2 are the invariant masses of the two b-jet
pairs. This cut ensures that these two pairs are from
identical resonances, i.e., from AA.

TABLE I. Column 1: Input parameter values and BRðH → AAÞ
for the BP (all masses are in GeV). Column 2: Cross section for
each of the signal channels, assuming a next-to-next-to-leading
order k factor of 1.35 [45]. Columns 3–5: Total signal and
background cross sections after applying all the selection cuts,
and the discovery significance for the three non-SM Higgs
bosons.

Preselection Reconstructed Higgs

Parameters cross section (fb) σS (fb) σB (fb) S=
ffiffiffiffi
B

p

mH� ¼ 169.7 AAA: 171.6 A
mH ¼ 144.7 AAZ: 0.76 15.4 8864 8.9σ
tβ ¼ 7.47 AAWW: 25.2 H�

sβ−α ¼ 0.99 AAW: 142.3 2.22 482 5.5σ

m2
12 ¼ 2355 AAAW: 79.7 H

BRðAAÞ ¼ 0.99 AAZW: 0.35 2.55 309 7.9σ
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Reconstruction of the H�: (1) All events should
contain at least 4 b-tagged jets and a pair of leading jets
(thus corresponding to the dominant qq̄0 → A1H� →
A1A2W� → 4bþ jj process). (2) The invariant mass of
the leading jj should lie within the mW � 25 GeV mass
window. (3) The four b jets were combined into two b-jet
pairs and only events where the invariant mass of each of
these pairs lied within a 45 GeV window around mA and
satisfied the asymmetry cut ᾱ < 0.2 were selected. This
criterion reduces the background significantly. The vector
pT sum of the b-jet pairs estimated the pT of the
reconstructed A’s, which are identified as A1 and A2 such
that pTðA1Þ > pTðA2Þ (since A2 originates from the H�
decay and is softer). (4) We calculated the invariant mass of
the 2bþ jj system, where “2b” is the softer pair (identified
as the A2), to obtain the mH� . (5) When more than one
pairings of the b jets satisfy the above condition, we
selected the combination which maximized the separation
ΔR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔηÞ2 þ ðΔϕÞ2

p
of the reconstructed H� and A1.

Reconstruction of the H: (1) The dominant signal
process is qq̄ → A1H → A1A2A3 → 4bþ X, so each event
should contain at least six b-tagged jets. We combined
these into three b-jet pairs and selected the combination for
which the invariant mass of each pair lied within a 45 GeV
window around mA, and also satisfied the ᾱ cut. (We note
here that the reconstruction efficiency for all the Higgs
bosons can be further improved by imposing ᾱ < 0.1 and
some other selection criteria used in [56]. However, due to
the large cross section of the QCD background, simulating
it for such a strong selection cut would require much more
substantial computational resources.) (2) The pT of each
b-jet pair was obtained by summing the 4-momenta of the
two b jets in it. Out of the three pairs, we identified the one
with the highest pT as the prompt A1. The remaining
system of 4 b jets then corresponded to the A2A3 pair from
H decay, and its invariant mass thus reconstructed the mH.
(3) As in the case of the H�, if multiple pairings of the b
jets satisfied the above criteria, we used that 4b-jet system
for reconstructing the H which maximized its separation
from the third b-jet pair (i.e., the prompt A1) in the fη;ϕg
space. (4) Since tagging 6 b jets is highly challenging due
to finite (mis-)tagging, events with at least 5 b jets were also
used for reconstructing theH. In this case, the light jet with
the leading pT was first assumed to be the 6th b jet for
performing steps 1–3. If this jet failed to satisfy the pairing
criteria above, these steps were repeated sequentially for
the jet with the next highest pT , until the correct jet
was found.
Significances at the LHC.—Using the steps detailed in

the previous section, we calculated the signal (background)
event rates, S (B) assuming an integrated luminosity of
3000 fb−1 at the LHC for our BP. In Fig. 1 we show the
normalized invariant mass distributions of the b-jet pairs for
these events. The subscript a implies the distribution for the
pair containing the leading b jet. The signal distributions in

this figure as well as the subsequent figures include all the
signal modes mentioned in Sec. II, while the background
distributions include both multi-jet and tt̄þ jets. Clearly,
the invariant masses peak at the true mA. Figure 2 similarly
shows the distributions of the bbjj invariant mass, which
peaks around the true mH� ¼ 169.7 GeV.
Fig. 3 depicts the reconstruction of theH, as described in

Sec. III. The red-dashed signal histogram, corresponding to
events with at least 5 b jets, has a peak around the true
mH ¼ 144.7 GeV. In this figure, the blue-dotted histogram
shows the invariant mass distribution when events with 6
b–tagged jets are considered, which results in a better mass
reconstruction compared to events with 5 b jets. However,
as noted earlier, estimation of the background for events
with 6 b jets is beyond the reach of our analysis.
From these histograms, we chose three bins around

the mass of each of the non-SM Higgs boson to estimate
the statistical significance, S=

ffiffiffiffi
B

p
of its signature. For the

reconstruction of the A, the S (B) implies the mean of the
number of events in the bins coveringmbb from45 to 90GeV
for the two signal (background) distributions in Fig. 1.
These significances are shown in Table I. The highest

significance was obtained for the A, since all the signal
modes contribute to its reconstruction. In the case of theH�
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background (black, solid) events for the BP.
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and H instead, the reconstruction algorithms are based on
the signal topologies AAW and AAA, respectively, and the
other contributions thus get diminished. For the H, the
requirement of at least 5 b-tagged jets strongly suppresses
the QCD background compared to the signal within the
three relevant invariant mass bins, which leads to a
considerably higher S=

ffiffiffiffi
B

p
for it compared to the H�, as

seen in the table. We point out again that, for the H signal,
this significance has been calculated for 5 b-tagged jets and
one light jet (rather than for 6 b jets).

Conclusions.—In a new physics framework containing
multiple Higgs fields, such as the 2HDM studied here, a
full reconstruction of the Higgs potential would entail
observing all the additional physical Higgs states and
measuring their masses and couplings. Numerous attempts,
both theoretical and experimental ones, have been made to
extract signatures of the two neutral Higgs bosons, besides
the SM-like one, as well as the charged scalar in various
Types of the 2HDM. These studies, however, generally
focus on a QCD-induced single- or multiple-production,
followed by a specific decay channel, of any one of these
additional states, for investigating its discovery prospects at
the LHC.
In this Letterwe have shown, for thevery first time, that all

the three non-SM Higgs bosons in this model might be
detectable in the unique final state with 4 (or more) b jets at
the HL-LHC. This is possible for specific (and rather
narrow) parameter space configurations, wherein intermedi-
ate pairs of relatively light Higgs bosons, produced on-shell,
lead to multi-A states, which subsequently decay in the bb̄
channel. Our sophisticated MC analysis yielded a S=

ffiffiffiffi
B

p
>

5σ for the signals of all the three non-SM Higgs states.
We therefore strongly advocate systematic investigations

of the EW-induced processes alongside the time-honored
QCD-initiated ones, as they may prove crucial for nailing
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FIG. 4. Normalized invariant mass distributions for the BP0. Top-left:mbb for the signal (green and blue, dashed) and background (red
and black, solid) events. Top-right:mbbjj for the signal (red, dashed) and background (black, solid) events. Bottom: mbbbb for the signal
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FIG. 3. mbbbb distributions for the signal (red and blue, dashed)
and background (black, solid) events for the BP.
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down the Type-I 2HDM as (the low-energy limit of) the
new physics framework prevalent in nature.
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Appendix: A lighter A.—In order to test the efficiency
of our reconstruction method for the scenario with
substantial partial width of the decay of the H into AZ,
we picked a BP0, for which BRðH → AZÞ ¼ 0.5 and
mA ¼ 50 GeV. mH and mH� for this BP0 are almost
identical to the respective ones for our main BP, and it
therefore allows us to assess the impact of also a smaller
mA, besides a significantly reduced BRðH → AAÞ, on
our analysis. The invariant mass distributions for the BP0

are shown in Fig. 4 for the A (top-left), H� (top-right),
and H (bottom), and closely resemble the respective
ones for the mA ¼ 70 GeV BP.
For the BP0, we see relatively low significances for all the

Higgs bosons in Table II. Our reconstruction algorithm for
the H is thus much more efficient when its decay to AA is
highly dominant. Furthermore, a lighter A results in much
softer b jets, which lowers the selection efficiency overall.
Despite all these deficiencies, the signal significances are
still a formidable > 3σ for all the Higgs bosons for this
BP0, thus demonstrating the strength of our proposed
reconstruction method.
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