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The gravitational waves emitted by a perturbed black hole ringing down are well described by damped
sinusoids, whose frequencies are those of quasinormal modes. Typically, first-order black hole perturbation
theory is used to calculate these frequencies. Recently, it was shown that second-order effects are necessary
in binary black hole merger simulations to model the gravitational-wave signal observed by a distant
observer. Here, we show that the horizon of a newly formed black hole after the head-on collision of two
black holes also shows evidence of nonlinear modes. Specifically, we identify one quadratic mode for the
l ¼ 2 shear data, and two quadratic ones for the l ¼ 4, 6 data in simulations with varying mass ratio and
boost parameter. The quadratic mode amplitudes display a quadratic relationship with the amplitudes of the
linear modes that generate them.
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Introduction.—Gravitational wave observations are
increasing rapidly and with them the science we can extract
from these observations. Some examples are the statistical
inference of the mass distribution of stellar mass black
holes in our universe (see, e.g., [1–4]), lessons on the
formation of heavy elements in the merger of binary
neutron stars [5], and tests of strong-field gravity and
black holes (see, e.g., [6–12]). For the latter, black hole
spectroscopy is a valuable tool [6,13–18]. This method
relies on the fact that after the merger of two black holes,
the newly formed object settles down to a new stationary
black hole by emitting gravitational waves with a discrete
set of complex frequencies called quasinormal modes
(QNMs). These QNMs depend only on the two parameters
describing black holes: their mass M and spin J. If more
than one QNM can be observed, one can test for con-
sistency of these modes (as has been done in [19,20]).
Black hole spectroscopy requires the observation of multi-
ple QNMs, which in turn depends not only on the strength
of the gravitational wave signal but also on our ability to
model these modes accurately. Linear perturbation theory
on a Kerr spacetime can be used to calculate the linear
frequencies of the QNMs [21–25], analyze gravitational
wave observations [26,27], and make forecasts for the
detectability of QNMs [7,17,28]. Studies of numerical

waveforms have shown the importance of various effects
of the linear modes, including higher overtones, mirror
modes, mode mixing, and the influence of the Bondi-
Metzner-Sachs frames [29–32].
However, nonlinearities are naturally expected in the

ringdown stage [33–38]. In particular, it has been shown
that modes with a frequency expected from perturbation
theory at quadratic order fit the ringdown phase better than
higher overtones in the linear theory [19,20,39,40] (see also
pioneering work in [41]). This is an important result both
conceptually, as general relativity is a nonlinear theory after
all, and practically as these quadratic QNMs may be
detectable in observations and thereby improve our
strong-field tests of general relativity and black holes.
The source emitting gravitational radiation—in the case

of QNMs, the time-dependent merger object that settles
down to a Kerr black hole—emits waves that go out to
infinity and fall into the horizon. The waves at infinity are
the ones we observe and interpret as QNMs, but numerical
simulations have indicated that the shear modes at the
horizon are also accurately described by a superposition of
modes with frequencies matching those of the signal at
infinity [42]. Given that the horizon is in the strong field
regime, one would naturally expect that the signal at the
horizon should also show evidence of nonlinearities. In
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particular, one would expect the shear modes to be better
fitted by a model that takes the next-to-leading order QNM
frequencies into account than a model based on frequencies
derived solely from linear perturbation theory. We inves-
tigated this for simulations of head-on collisions of two
black holes. We find evidence for the presence of a single
quadratic tone in the shear mode l ¼ 2, and of two
quadratic tones in the shear mode l ¼ 4 and 6.
Hence, nonlinearities are present both at infinity and near

the horizon. This invalidates the idea that nonlinearities
may be hidden behind the horizon or are even absent
[29,39,43–46].
Setup.—We study the head-on collision of nonspinning

black holes with different boost parameters and mass ratios,
as summarized in Table I. In particular, we investigate two
sets of simulations. The first set (S1–S4) describes black
holes initially at rest with Brill-Lindquist’s bare masses m1

andm2 [47]. The second set (S5 − S9) are equal-mass black
holes with Bowen-York initial data [48], in which both
black holes have an equal and opposite Bowen-York
momentum parameter of magnitude P expressed in units
of M∘ ¼ m1 þm2, the total bare mass [49].
The boosted simulations have larger linear amplitudes

than the unboosted ones, typically by a factor of 10.
Consequently, the quadratic amplitudes are also larger in
these boosted simulations and it is easier to confidently
establish their presence for larger l modes.
We track the evolution of the outermost marginally outer

trapped surface (MOTS), which traces out a 2þ 1-
dimensional world-tube H and is the dynamical black
hole horizon of the newly formed black hole at t ¼ 0
(t ¼ 1.06M) for the boosted (unboosted) simulations.
Initially, this surface is highly distorted and dynamic,
but it quickly settles down to a nearly spherical MOTS
as the black hole approaches a Schwarzschild solution. We
define the onset of the ringdown as the time during which
the change in the area of the MOTS becomes oscillatory
and below 1%. In practice, we take trd ¼ 8.2M, whereM is
the mass of the remnant, such that all simulations have
reached this ringdown regime. This makes it easier to
compare the simulations. Having access to the evolution of
the horizon area allows us to avoid the contamination in our
data from the merger phase, a common issue in this type of
analysis, discussed in depth in [19,20]. We follow the
horizon evolution until tf ≈ 40M for the unboosted simu-
lations and tf ≈ 32M for the boosted ones.

The shear of the outward null normal l to the MOTS is a
measure of the gravitational waves going into the horizon
[43,50], but also a geometric quantity measuring the
deformation of the horizon surface. In the following, we
focus uniquely on the shear, although a complementary
study using the mass multipole moments shows qualita-
tively similar results. We fix a unique l via la∇at ¼ 1,
where ∇a is the spacetime covariant derivative and t is the
coordinate time of the simulation. The shear σ of l is then
calculated similarly to [42], but we also multiply by the
remnant mass to make it dimensionless.
During the ringdown, we can decompose σ at the horizon

as a sum of damped sinusoids [42], namely,

σðt; θ;φÞ ¼
X

l≥s;m;n;�
Almne

−iω�
lmnðt−trdÞþiϕlmn

2Ylmðθ;φÞ

≡ X

l≥s;m
σlm2Ylmðθ;φÞ ð1Þ

where the ðl; mÞ indices describe the angular decomposi-
tion of the modes (with m ¼ −l;…; l), Almn are the
constant (dimensionless) amplitudes, ϕlmn the phases,

2Ylm the spin-weighted spherical harmonics with spin-
weight s ¼ 2 and ω�

lmn the complex frequencies corre-
sponding to the corotating Re½ωþ

lmn� > 0 and counter-
rotating Re½ω−

lmn� < 0 modes. The n ¼ 0; 1; 2;… denote
the n-tone excitation of a given ðl; mÞ mode, with n ¼ 0
being the fundamental tone and n ≥ 1 correspond to
overtones. Because of the rotational symmetry of the
head-on collision, the shear is fully described by the
m ¼ 0 modes and ωþ

lmn ¼ jω−
lmnj, so we work with

ωln ¼ ωþ
l0n ¼ −ω−

l0n. Hence, we set m ¼ 0 and drop the
m subindex in both the shear modes σl0 ¼ σl and the
complex frequencies. Additionally, all odd l modes vanish
for the boosted simulations since the mass ratio is one.
Further, by the symmetries of the problem, σl is a real-
valued function, so the positive and negative frequencies
combine to provide a manifestly real expansion of the shear
modes

σl ¼
Xnmax

n¼0

�
Clne−Im½ωln�ðt−trdÞ cosðRe½ωln�ðt − trdÞÞ

þ Slne−Im½ωln�ðt−trdÞ sinðRe½ωln�ðt − trdÞÞ
�
: ð2Þ

Here Cln and Sln are real amplitudes with 2Aln ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
ln þ S2ln

q
, and tanϕln ¼ −Sln=Cln [42].

Using black hole perturbation theory, one can calculate
the values of the QNM frequencies rather straightforwardly
to linear order in the metric perturbations (see the efficient
open software routine in [51]). The next order in perturba-
tion theory is rather involved (see Refs. [52–57]) but for
each pair of linear QNM frequencies ωln and ωl0n0 , we
expect a corresponding quadratic QNM frequency

TABLE I. Mass ratio μ and momentum parameter P of nine
simulations of the head-on collision of two Schwarzschild black
holes.

Simulation S1 S2 S3 S4 S5 S6 S7 S8 S9

μ ¼ m1=m2 1 1.6 2 3 1 1 1 1 1
P 0 0 0 0 0.90 1.20 1.52 1.80 2.10
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ωln×l0n0 ¼ ωln þ ωl0n0 . We find evidence of quadratic
frequencies in the shear modes l ¼ 2, 4, and 6, which
we show in Table II. Our analysis is inconclusive for the
l ¼ 3 mode in the unboosted simulations and the l ¼ 8 in
the boosted ones due to the signal’s weak amplitude.
Here, we only present the detailed analysis for the l ¼ 2

shear modes of the boosted simulation S7 with a spatial
discretization, Δx ¼ M∘=res, where M∘ is the total bare
mass and “res” refers to the resolution of the grid spacing.
The results presented here for S7 use res ¼ 120. We also
briefly discuss the results for the unboosted simulation S2
with res ¼ 312. The details for the remaining simulations
in Table I are not discussed explicitly, since they are
completely analogous to the ones presented here. The
results for higher l modes can be found in the
Supplemental Material [58].
Mismatch and stability.—When fitting the data, several

combinations of linear and quadratic tones are possible. To
minimize the risk of overfitting as discussed in [19,20,59],
we consider a model with the lowest possible number of
tones for which the quadratic mode is resolved [60]. For
the boosted simulations, a model with three tones suffices
[nmax ¼ 2 in Eq. (2)], while for the unboosted ones, we
need a model with at least four tones (nmax ¼ 3). We
analyze the boosted and unboosted simulations independ-
ently, so we only compare models with the same number of
modes (and thus the same number of free parameters).
Using that the QNM model (2) is linear in Cln and
Sln, we use a linear least square fitting algorithm to
minimize the L2 norm of the residual. A nonlinear fitting

algorithm, such as the one used in [42], yields completely
analogous results.
We first explore which quadratic modes could be present

in our ringdown dataset t∈ ½trd; tf � by scanning over the
complex frequency of the last overtone in the model (2). We
compute the mismatch (see Ref. [42] for its definition) for
each possible frequency of the last overtone. The model
with the smallest mismatch is considered the best model.
Figure 1 shows that the quadratic frequencies ω20×20 and
ω21×20 are favored over the linear overtone ω22. The
unboosted simulations show the same trend.
We then assess the presence of these quadratic tones by

ensuring that they persist when narrowing our dataset.
Specifically, we compute the mismatch for the different
models while varying the starting time of the dataset to later
times t0 ∈ ½trd; 25M�. Figure 2(a) shows that the models
containing the quadratic frequencies ω20×20 and ω21×20
have lower mismatch at earlier times, when these modes are
expected to be resolvable. In Fig. 2(b), we track the stability
of the fit in this process, i.e., the evolution of the mode’s
amplitudes with the starting time t0. The model including
the quadratic frequency ω20×20 is the most stable, with a
maximum relative variation at early times t∈ ½trd; 15M� of
∼2% for the fundamental tone’s amplitude and ∼30% for
the amplitudes of the first overtone and the quadratic tone.
As already noticed in [42], the model with two linear
overtones has amplitudes varying over several orders of
magnitude and is therefore unstable: the maximum relative
variation of the fundamental tone’s amplitude is ∼10%
while for the first and second overtones, it is ∼60% and
∼80%, respectively.
We finally consider the model (2) not only with free

amplitudes and phases but also with the frequency of the

FIG. 1. Mismatch between the l ¼ 2 data (t∈ ½trd; tf�) of the
boosted simulation S7 starting at time trd and a model for σ2 with
three tones, in which two frequencies are fixed to the general
relativity predictions ω20 and ω21, and the third one is varied.

TABLE II. The slope in Eq. (3) for different quadratic modes
present for different l modes. For the boosted simulations, we
detect the presence of the quadratic tones when using models
with the fundamental mode, one overtone and one quadratic
mode (l ¼ 2) or the fundamental tone and two quadratic modes
(l ¼ 4 and l ¼ 6), while for the unboosted l ¼ 2 shear mode we
need to include at least one additional linear overtone. We marked
with an asterisk the results for the shear mode l ¼ 6 since the
models with either the quadratic frequencies ω20×60 or ω40×40 are
possible, as explained in the Supplementary Material. We present
both possibilities here, the second one, including the tones ω20×40
and ω40×40, is differentiated in bold.

Mode ωln×l0n0 Boosted (α) Unboosted (α)

l ¼ 2 ω20×20 1.51þ0.15
−0.04 6.21þ0.15

−1.15

l ¼ 4 ω20×20 0.73þ0.06
−0.33

ω20×40 2.6þ0.26
−0.26

l ¼ 6� ω20×40 1.780.53−0.74
ω20×60 2.52þ1.29

−0.59
ω20×40 1.780.44− 0.65
ω40×40 2.82+ 1.5− 0.62
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last overtone free. We then implement an algorithm of
mismatch minimization to find the frequency for which the
fit over the dataset t∈ ½t0; tf � is optimal. In other words, we
effectively track the frequency in Fig. 1 for which
the mismatch is minimal as we vary the starting time.
Figure 2(c) shows the relative variation of the optimal
frequency δω ¼ ðωfit − ωknownÞ=ωknown with respect to
known possible frequencies (with ωknown ¼ ωln×l0n0 ;ωln).
The advantage of this procedure is that it sets an absolute
lower bound to the mismatch by finding the optimal
numerical frequency, and consequently, it enables us to
discard possible tones in our model. In fact, Fig. 2(c) shows
that a linear model is not favored, not even when the
quadratic modes have already decayed since the deviation
of the linear overtone with respect to the optimal frequency
remains above 50% at all starting times. Further, Fig. 2(c)
also shows that both quadratic frequencies ω20×20 and
ω21×20 have a minimum deviation with respect to the
optimal frequency of about 7% and only surpass the
30% deviation once the l ¼ 2 shear mode can be accurately
described by the fundamental tone (around t ¼ 20M). This

deviation is consistent with the criteria used in Fig. 1 in
[39], and therefore the quadratic frequencies ω20×20 and
ω21×20 are good candidates to be in our model. The
amplitude relation detailed in the next section confirms
the presence of the quadratic tone ω20×20.
Amplitude relations.—The amplitudes of the quadratic

modes are related to the ones of the linear modes through

Aln×l0n0 ¼ αAlnAl0n0 ; ð3Þ

where α is the slope of the line passing through the origin. If
a quadratic mode is present in our data, then we should be
able to confirm its presence by fitting Eq. (3) across
different simulations. Otherwise, the presence of the
quadratic mode could be a consequence of overfitting or
an artifact of the mode mixing. We analyze the nonboosted
(S1–S4) and boosted (S5–S9) simulations independently.
In this part of the analysis, we used lower resolution
simulations, as these were accurate enough (in particular,
we used a resolution of 120 for the boosted and at least 90
for the unboosted simulations).

FIG. 2. Mismatch, amplitudes, and best-fitted frequency between the l ¼ 2 data of the boosted simulation S7 and a model for σ2 with
three tones as a function of the starting time t0 ∈ ½trd; 25M� (a) Mismatch of the three models with the third tone’s frequency ω22, ω20×20
or ω21×20; (b) Amplitudes of the three QNMs for the linear (no superindex) and quadratic models; (c) Relative variation of the optimal
frequency with respect to ω22, ω20×20 and ω21×20.

FIG. 3. Amplitude relation for the quadratic tone ω20×20 in the shear mode l ¼ 2 when considering both the boosted and unboosted
simulations. In both cases the dataset initial time t0 is fixed to t0 ¼ 15M. (a) Boosted simulations with constant mass ratio μ ¼ 1;
(b) Unboosted simulations with different mass ratios (and momentum parameter P ¼ 0).

PHYSICAL REVIEW LETTERS 131, 231401 (2023)

231401-4



Figure 3 shows the amplitude relation for the l ¼ 2 shear
mode. In both sets of simulations, such a relation is found at
late times t0 ≥ 15M within the uncertainty bars [61]. At
earlier times, the presence of higher overtones blurs this
relationship. This analysis confirms the presence of the
quadratic frequency ω20×20 in the l ¼ 2 shear mode. The
slope in Eq. (3) is reported in Table II.
Given that the remnant black hole in both sets of

simulations is Schwarzschild, one might have expected
the slopes in the two sets of simulations to be comparable.
We see instead that the slopes in the two sets of simulations
are inconsistent. This could be because the error bars do not
capture systematic modeling errors, for instance, due to the
finite separation of the holes in our initial data, inherent to
this type of numerical simulations. Additionally, initial
conditions are more important than one may naively think.
In [38], the authors showed that the slope of the amplitude
relation when solving the second-order Teukolsky equation
is three times smaller than the slope obtained from the
nonlinear numerical simulations in [39] and [40]. A
detailed study of such systematic errors, including spin
effects, will be presented elsewhere.
In Table II, we collect the slopes for the quadratic

relation Eq. (3) of the quadratic tones that we found for
the l ¼ 2, 4, and 6 shear modes. For the l ¼ 2 shear mode,
we only include the quadratic tone ω20×20, since the
amplitude relation for the quadratic frequency ω21×20 is
not satisfied for the set of boosted simulations within the
uncertainty bars (see Fig. 7 in the Supplemental Material),
and therefore we conclude this mode is not present in the
l ¼ 2 shear mode given our resolution. For the l ¼ 4 shear
mode we find that a model with the fundamental tone and
two quadratic tones, the ω20×20 and ω20×40, is the most
favored. Both quadratic tones satisfy the amplitude relation
over several boosted simulations, and their slopes have
been therefore included in Table II. Finally, for the l ¼ 6
shear mode, we also find that a model with the fundamental
mode and two quadratic ones is the most suitable to fit the
shear data. In this case, models including the quadratic
frequencies ω20×40 and ω20×60 or ω20×40 and ω40×40 are
both possible, and the small difference in the fit residuals
between the two prevents us from opting for one or the
other. The figures and the full discussion for the l ¼ 4 and 6
shear modes can be found in the Supplemental Material.
We would like to highlight that we find the same combi-
nation of relevant modes as Cheung et al. [39] for the l ¼ 4
mode, which provides us with new and novel evidence of
arising correlations between the horizon dynamics and the
gravitational wave radiation.
Conclusion.—While black hole horizon simulations

have existed for a while and one naturally expects the
nonlinear nature of general relativity to be important in this
regime, this is the first demonstration of nonlinear effects at
the horizon. In particular, we have shown that the l ¼ 2, 4,
6 shear modes at the horizon—a strong field regime—soon
after a head-on collision of two black holes are better fitted

with a model that includes next-to-leading order effects in
perturbation theory than a purely linear model. These
quadratic modes are in agreement with those found by
[39] at infinity. Finding the presence of quadratic modes
was subtle, it required (1) high-accuracy numerical data,
and/or (2) a signal with large linear amplitudes so that the
corresponding quadratic amplitudes are also large (as is the
case for a boosted signal).
The excitement of observing electromagnetic signals

often stems from their origin in “interesting” objects, which
allows us to gain insights into the emitter’s properties.
While the initial detection of gravitational waves was
inherently thrilling, gravitational waves increasingly
become a tool to investigate the sources emitting them.
Black holes are ideal sources to investigate with gravita-
tional waves given their blackness. However, to maximize
our understanding of black holes and their horizons, it is
crucial to establish a clear connection between the gravi-
tational wave observed at infinity and the horizon geom-
etry. This work is a small step in that direction by showing
that just as the wave at infinity, also the horizon geometry of
black holes requires nonlinear effects to accurately describe
it. It is worth noting the intriguing possibility of a
connection with the Kerr/CFT correspondence, as sug-
gested in [62].
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