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Uncertainty principle prohibits the precise measurement of both components of displacement parameters
in phase space. We have theoretically shown that this limit can be beaten using single-photon states, in a
single-shot and single-mode setting [F. Hanamura et al., Estimation of gaussian random displacement using
non-gaussian states, Phys. Rev. A 104, 062601 (2021).]. In this Letter, we validate this by experimentally
beating the classical limit. In optics, this is the first experiment to estimate both parameters of displacement
using non-Gaussian states. This result is related to many important applications, such as quantum error
correction.
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Introduction.—Uncertainty, which prohibits the simulta-
neous measurement of noncommutative observables x̂ and
p̂ such that ½x̂; p̂� ¼ i, is a fundamental feature of quantum
mechanics. As far as classical states are used, uncertainty
imposes limits to the precision of quantum sensors, which
are called standard quantum limits [1], or classical limits.
However, it has long been known that these limits can be
circumvented using nonclassical quantum states and mea-
surements, and beating the classical limits has been an
important topic for various applications such as gravita-
tional wave detection [2], optical clock [3], and optome-
chanical systems [4].
Displacement operation is a parallel translation operation

in the phase space: x̂ → x̂þ ξ, p̂ → p̂þ η. The problem to
estimate both components of unknown displacement
parameters ξ, η is a fundamental problem that is directly
related to the uncertainty of x̂ and p̂. This problem becomes
trivial in the case when the displacements with the same
parameter are applied multiple times to an ensemble of
quantum states, or the case of entangled states where the
displacement is implemented on only single mode. In such
cases, there are ways to precisely know ξ, η using one-mode
or two-mode squeezed states [5].

Thus, the most interesting and nontrivial case is the
single-mode and single-shot estimation of both parameters.
Reference [6] has shown that, even in this situation, both
parameters can be precisely known using so-called
Gottesman-Kitaev-Preskill (GKP) states, which have been
originally proposed for quantum error correction [7].
However, a GKP state is a highly non-Gaussian state
and its generation in optical systems has not been achieved
yet, although it has been generated in other physical
platforms such as superconducting cavity [8] and ion trap
]9 ]. Thus, although there are some experimental attempts to
use non-Gaussian states for quantum parameter estimation
in both optics and other bosonic systems [10–12], single-
shot single-mode estimation of both parameters of displace-
ments has not been experimentally demonstrated in optics.
To deal with this problem, in Ref. [13] we have theoreti-
cally investigated the estimation of displacement parame-
ters using experimentally more feasible non-Gaussian
states, and have shown that even single-photon states
can beat the classical limit with the newly introduced
criteria to evaluate the estimation error using the variance of
the posterior distribution after the postselection of the
measurement outcome.
In this Letter, we experimentally demonstrate estimation

of displacement parameters using single-photon states with
accuracy beyond the classical limit. This is the first
experimental demonstration of single-shot single-mode
estimation of two parameters of displacement using non-
Gaussian states in optical systems. Our result also can be
considered as the first observation of the ability to sense
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displacements coming from the sub-Planck structure [6,14]
of optical quantum state. This result can serve as a
fundamental result not only for quantum parameter esti-
mation using non-Gaussian states, but also for the research
of quantum error correction, as the single-shot single-mode
estimation of both parameters of displacement is closely
related to quantum error correction of Gaussian errors
[7,15,16].
Displacement estimation problem.—We will briefly

explain the proposal in Ref. [13]. Displacement operator
D̂ðξ; ηÞ is defined as a translation in phase space:

D̂†ðξ; ηÞx̂ D̂ðξ; ηÞ ¼ x̂þ ξ; ð1Þ

D̂†ðξ; ηÞp̂ D̂ðξ; ηÞ ¼ p̂þ η: ð2Þ
We consider a problem to estimate both parameters ξ and η
in a single-shot experiment. The input state is restricted to
single-mode states. We can perform postselection of the
measurement outcome, which may make the estimation
error smaller at the expense of lower success probability.
The system in Fig. 1 is proposed for the estimation of

displacements. Two single-photon states are prepared, one
as the probe to be input to the displacement operation, and
the other as an ancillary state for the measurement. We
consider the case where we have prior information that the
distribution of ξ, η is an isotropic Gaussian function

pðξ; ηÞ ¼ 1

πv
exp

�
−
ξ2 þ η2

v

�
; ð3Þ

which means we consider so-called Gaussian quantum
channel or additive Gaussian noise [17]. When a meas-
urement outcome yx, yp is obtained, the posterior distri-
bution of ξ, η is expressed as the product of the prior
distribution and the likelihood function

pðξ; ηjyx; ypÞ ∝ pðξ; ηÞpðyx; ypjξ; ηÞ; ð4Þ

as shown in Fig. 2.

The likelihood function pðyx; ypjξ; ηÞ reflects the infor-
mation of the input probe state and the measurement. In the
case we consider, it is expressed as

pðyx; ypjξ; ηÞ ∝ ðW1 �W2Þ
� ffiffiffi

2
p

yx − ξ;
ffiffiffi
2

p
yp − η

�
; ð5Þ

where W1 and W2 are Wigner functions of the input probe
single-photon state and the ancillary single-photon state for
the measurement, and � represents convolution. This
expression holds for arbitrary input probe states and
measurement ancillae, including imperfect single-photon
states in experiment. The estimated value ξ̃, η̃ is calculated
as the mean of the posterior distribution

ξ̃ ¼
Z Z

ξpðξ; ηjyx; ypÞdξdη ð6Þ

η̃ ¼
Z Z

ηpðξ; ηjyx; ypÞdξdη: ð7Þ

The error of estimation v0 is defined as the sum of mean-
square errors of ξ and η:

v0 ¼ �ðξ − ξ̃Þ2�þ hðη − η̃Þ2i; ð8Þ

where the average is taken over all postselected events.
In Ref. [13], we derived the Gaussian bound and the

classical bound of the estimation error v0. We have shown
that with postselection

y2x þ y2p < r2 ð9Þ

for small value of r, pure single-photon states can beat the
Gaussian limit, and single-photon states up to 50% loss can
beat the classical limit. In the following sections, we show
experimental results demonstrating the estimation error
smaller than the classical limit.
Experimental setup.—Figure 3 shows our experimental

setup. We use a continuous-wave laser with a wave length
of 1545.32 nm. We prepare two independent single-photon
sources, with heralding scheme using optical parametric
oscillators (OPOs) with periodically poled KTiOPO4

P

M

FIG. 1. A schematic figure of the system to estimate displace-
ments. After the displacement is applied to the input probe single-
photon state, dual-homodyne measurement with an ancillary
single-photon state is performed, obtaining the measurement
outcome yx, yp.

× =

Prior Likelihood Posterior

Gaussian

FIG. 2. Bayesian estimation of displacement. The posterior
distribution of ξ, η after obtaining the measurement outcome is
expressed as the product of the prior distribution and the
likelihood function.
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(PPKTP) crystals of Type-0, and superconducting nano-
strip single-photon detectors (SNSPDs) made of NbTiN
[18]. The free spectral range of the OPOs is 1.1 GHz
and the FWHM is 25 MHz. The event rate is around
1 × 104 cps for each single-photon source. Photon coinci-
dence events where two trigger timings t1 and t2 satisfy
jt1 − t2j < 5 ns are collected.
Random coherent states whose complex amplitude

follow isotropic Gaussian distribution Eq. (3) with variable
v is generated using waveguide electro-optic modulators
(EOMs) and a fiber interferometer. The frequency band-
width of the Gaussian noise is 6 MHz. Using the random
coherent state, we apply random displacement to one of the
single-photon states. After interfering at the 50∶50 beam
splitter, x and p quadratures are measured by homodyne
detectors respectively on two output modes, obtaining the
measurement outcomes yx and yp.
Results.—We first set v ¼ 0 (no displacement), and

measured the simultaneous distribution pðyx; ypj0; 0Þ of
homodyne measurement outcomes [Figs. 4(a) and 4(b)].
This matches well with the theoretical prediction when
imperfect single-photon states with 25% vacuum and 2%
two-photon components are used [solid line in Fig. 4(b)].
Note that from Eq. (5), this distribution gives the in-
formation about the shape of the likelihood function
pðξ; ηjyx; ypÞ. Sharp peak near the origin represents
the sub-Planck structure of the Wigner function of

single-photon states, which enables higher estimation
accuracy.
Second, v is set to v ¼ 0.13, 0.34, 0.8, 1.2, and 165

741,168 917,125 339,117 375 events are collected for each
case, respectively. These values of v are chosen so that it
captures the trend of estimation error v0 in a wide range of
v. Estimated values ξ̃, η̃ of displacement parameters ξ, η are
calculated from the measurement outcomes yx, yp and the
estimated likelihood function pðyx; ypjξ; ηÞ. Events where
the homodyne measurement outcomes satisfy Eq. (9) are
collected, and the estimation error v0 [Eq. (8)] is evaluated.
Figure 4(c) shows the relative estimation error v0 normal-
ized by the classical limit, where postselection range in
Eq. (9) is taken as r ¼ 0.2, which is small enough for
having advantages against the classical limit. Red points
represent actually measured data points. In order to increase
the data points, different values of v are simulated by
postselecting events so that the distribution of ξ, η has the
desired variances [blue points in Fig. 4(c)]. Theoretical
prediction in the case of imperfect single-photon states
is shown together (blue solid line). The classical limit is
beaten in the range of 0 < v < 0.9. For v ¼ 0.34, which is
close to the optimal point, the dependence on the range of
postselection r is also tested [Fig. 4(d)]. The classical limit
is beaten up to r < 0.7. We also used vacuum inputs to
verify the classical limit [black points in Fig. 4(d)], which
matches quite well with the theoretically calculated
classical limit.

Oscilloscope

Homodyne detector 1

(x measurement)

Homodyne detector 2

(p measurement)

Single-photon source 1

Single-photon source 2

OPO

Frequency filtersSNSPD

R99.6%

R50%

Gaussian noise generation

EOM

EOM

AWG

Gaussian noise (x)
Gaussian noise (p)

FIG. 3. Experimental setup. OPO, optical parametric oscillator; SNSPD, superconducting nanostrip single-photon detector; EOM,
electro-optic modulator; AWG, arbitrary waveform generator.
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Conclusion and discussion.—In summary, we have
demonstrated single-mode, single-shot displacement esti-
mation with accuracy beyond the classical limit using
single-photon states, homodyne measurements, and post-
selection. This is the first optical demonstration of the
ability to sense both parameters of displacement that
emerge from the sub-Planck feature of non-Gaussian states.
This experiment can serve as a fundamental result for future
research in quantum parameter estimation using non-
Gaussian states.
As a future work, this system can be extended to

arbitrary input probe state and measurement ancilla, as
mentioned in Ref. [13]. Using states with more non-
Gaussianity leads to the estimation precision better than
Gaussian limit even without the postselection.
It is also worth noting that the setting considered here is

also closely related to the quantum error correction. For
example, GKP error correction [7] relies on the ability of
the GKP state to detect small displacement errors, espe-
cially Gaussian random displacement errors just like in our
setting. This also needs to be single-shot, single-mode

estimation, as the displacement is random and acts on each
mode independently. The difference here is that in quantum
error correction, one needs to estimate the displacement
without destroying the quantum information encoded,
while in this Letter we estimate the displacement by
measuring all modes thus destroy the quantum information.
The correspondence is more clear in the two-mode squeez-
ing code [15,19], which is based on classical correlation
between the displacements on different modes. In this case,
one can estimate the displacement by performing destruc-
tive measurement, although additional optimization of
estimation process would be necessary because of the
correlation between displacements. Investigating more
concrete correspondence is an interesting topic for future
research.
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