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The Kibble-Zurek mechanism (KZM) predicts that the average number of topological defects generated
upon crossing a continuous or quantum phase transition obeys a universal scaling law with the quench time.
Fluctuations in the defect number near equilibrium are approximately of Gaussian form, in agreement with
the central limit theorem. Using large deviations theory, we characterize the universality of fluctuations
beyond the KZM and report the exact form of the rate function in the transverse-field quantum Ising model.
In addition, we characterize the scaling of large deviations in an arbitrary continuous phase transition,
building on recent evidence establishing the universality of the defect number distribution.
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The Kibble-Zurek mechanism (KZM) is an important
paradigm in nonequilibrium statistical physics, describing
the dynamics across a continuous phase transition [1–3].
The divergence of the equilibrium relaxation time in the
neighborhood of the critical point makes the critical
dynamics necessarily nonadiabatic for large systems and
leads to the spontaneous formation of topological defects.
Consider a phase transition from a high symmetry phase to
a broken symmetry phase, induced by varying a control
parameter g across its critical value gc in a finite quench
time τQ. The central prediction of the KZM is that the
average defect density, generated during the phase tran-
sition, displays a universal power-law dependence as a
function of the quench time. The KZM thus makes a
quantitative prediction on the breakdown of adiabatic
dynamics across a phase transition and holds in both the
classical and quantum regimes [1–8].
Kibble’s pioneering work was motivated by cosmological

considerations regarding structure formation in the early
Universe [9]. The prospect of exploring analogous phenom-
ena in condensed matter systems was soon realized [10–12]
and pursued experimentally [3,13–15]. The advance of
quantum technologies has led to new tests of the KZM
using quantum simulators in a variety of platforms, includ-
ing ultracold gases [16–22], trapped ions [23–27], and
Rydberg gases [28,29]. Recently, the KZM has been studied
with quantum computing devices, such as quantum
annealers [30–33]. The accumulated body of literature
broadly supports the validity of KZM in a wide variety
of systems.
Experiments probing critical dynamics generally involve

an ensemble of single experimental runs or individual

realizations in which measurements are performed. As a
result, they can access information beyond the average
defect density and characterize the ensemble statistics. It is
thus natural to ask whether there are universal signatures in
the statistical properties of spontaneously generated topo-
logical defects [34–36]. The full counting statistics of
defects appears to be universal in classical and quantum
systems. Specifically, in classical continuous phase tran-
sitions, it has been found that the defect number distribution
is binomial with an average density in agreement with the
KZM [37–40]. Exact solutions in quantum integrable
systems have shown that the kink number distribution is
Poisson binomial [26,35], a feature that can hold even when
the system is coupled to an environment [32,33]. These
predictions build on the conventional KZM but lie outside
its scope, requiring additional assumptions. We shall thus
refer to them as beyond-KZM physics.
The average number of defects is an extensive quantity.

By contrast, the defect density is intensive, and its fluctua-
tions near equilibrium are approximately Gaussian, in
agreement with the central limit theorem. Large deviations
theory (LDT) addresses the probability of nontypical events
in which an intensive quantity deviates from its average
value. The probability of such large deviations decays
exponentially with increasing system size, at a rate con-
trolled by the so-called rate function [41–43]. LDT provides
a building block of statistical mechanics in and out of
equilibrium. As such, it is a natural framework to explore
beyond-KZM physics. To date, LDT has been used to
describe the dynamics of many-body quantum systems in
the limit of sudden quenches when τQ → 0, e.g., to
characterize the work statistics of a given process [44–46].
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In this Letter, we establish the universality of large
deviations beyond the KZM, after crossing a quantum
phase transition in a finite time. Specifically, we report
the exact rate function of the driven transverse-field quan-
tum Ising model (TFQIM), characterizing the statistics of
large fluctuations away from the mean kink density pre-
dicted by the conventional KZM. We further generalize
these results to characterize the universality of large devia-
tions in an arbitrary continuous phase transition leading to
pointlike defects.
Transverse-field quantum Ising model.—The TFQIM

has been instrumental in generalizing the KZM from the
classical to the quantum domain [4–7,25], and assessing the
universality of beyond-KZM physics, both in theory [35]
and in experiments [26,32,33]. Its Hamiltonian is given by

H½gðtÞ� ¼ −J
XN
l¼1

½gðtÞσxl þ σzlσ
z
lþ1�; ð1Þ

where σx;y;zl are Pauli matrices acting on site l, J > 0 favors
ferromagnetic alignment and gðtÞ plays the role of an
effective magnetic field. In the fermionic representation, the
Ising chain Hamiltonian becomes [47]

H½gðtÞ� ¼ 2J
X
k>0

ψ†
k½τzðgðtÞ − cos kÞ þ τy sin k�ψk; ð2Þ

in terms of the fermionic operators ψ†
k ≡ ðc̃†k; c̃−kÞ in

momentum space. Here, τx;y;z are another set of Pauli
matrices. We choose to work with periodic boundary
conditions so that the momentum is a good quantum
number and takes the values k ¼ ð2nþ 1Þπ=N
with n ¼ −N=2;…; N=2 − 1, as discussed, e.g., in
Refs. [47,52]. Momentum conservation restricts the for-
mation of defects to kink-antikink pairs. Choosing the total
number of spins N to be even proves convenient since the
number of kink pairs is then restricted to outcomes in the set
f0; 1; 2;…; N=2g. Given Eq. (2), the dynamics of the
TFQIM can be reduced to that of an ensemble of non-
interacting two-level systems [7].
Consider a quench, in a finite time τQ, from the para-

magnetic to the ferromagnetic phase,

gðtÞ ¼ gc

�
1 −

t
τQ

�
; ð3Þ

where gð0Þ ¼ gc ¼ 1 is the critical value of g, and
we let t run from −3τQ to τQ. We will refer to τQ
as the quench time. We choose gðτQÞ ¼ 0 for simplicity
since the final Hamiltonian contains only the ferromagnetic
term and commutes with the kink-pair number operator
KN ≡ 1

4

P
N
l¼1 ð1 − σzlσ

z
lþ1Þ. This observable counts the

number of kink-antikink pairs in a given quantum state
and is extensive in the system size N [7]. The study of its
eigenvalue statistics provided the basis of previous studies

exploring universality beyond the KZM [26,32,33,35,38].
We define an intensive kink-pair density operator:

ρ̂N ≡ KN

N
¼ 1

4N

XN
l¼1

ð1 − σzlσ
z
lþ1Þ: ð4Þ

The density of kink pairs, upon completion of the quench
in Eq. (3), is given by the expectation value ρKZM ¼ hρ̂Ni
at the final time τQ. It exhibits a power-law scaling in the
slow driving limit, i.e., to leading order in a 1=τQ
expansion [2,4–7],

ρKZM ¼ hρ̂Ni ¼
1

4π

ffiffiffiffiffiffiffiffiffiffi
ℏ

2JτQ

s
; ð5Þ

in agreement with the celebrated, universal KZM power-

law scaling ρKZM ∝ τ−ν=ð1þzνÞ
Q for the critical exponents

ν ¼ z ¼ 1 of the TFQIM [3].
In any quantum state other than an eigenstate of

Hðg ¼ 0Þ, the density operator ρ̂N will exhibit fluctuations
of either classical or quantum nature. The probability
distribution function PðρNÞ, characterizing the eigenvalue
statistics of the kink-pair density operator, reads

PðρNÞ ¼ hδðρ̂N − ρNÞi; ð6Þ

where ρN is the random variable associated with the kink-
pair-number operator ρ̂N. We aim at uncovering via LDT
the universality of large fluctuations of PðρNÞ away from
the mean, which the conventional KZM predicts.
Large deviations theory beyond the KZM in the

TFQIM.—The central object in LDT is the scaled cumulant
generating function, associated with a random variable ρN ,
depending on a large parameter N:

λðθÞ ¼ lim
N→∞

1

N
lnheNθρ̂N i: ð7Þ

The Gärtner-Ellis theorem states that when λðθÞ exists for
all real values of θ, then the random variable ρN satisfies the
large deviations principle [41,42],

PðρN ∈ ½ρ; ρþ dρ�Þ ≈ e−NIðρÞdρ; ð8Þ

with the rate function IðρÞ given by the Legendre-Fenchel
transform:

IðρÞ ¼ sup
θ∈R

½θρ − λðθÞ�: ð9Þ

Deviations from the mean value are thus exponentially
suppressed by the rate function IðρÞ weighted with the
system size, and the random variable concentrates around
the mean in the thermodynamic limit.

PHYSICAL REVIEW LETTERS 131, 230401 (2023)

230401-2



Let us consider the application of the Gärtner-Ellis
theorem to the distribution of kink pairs generated across
a quantum phase transition in the TFQIM. In this case, the
defect density is a non-negative quantity. As a result, IðρÞ is
divergent for ρ < 0, and we focus on the case with ρ ≥ 0.
We note that in Fourier space, the operator associated with
the density of kink pairs at the end of the quench is

ρ̂N ¼ 1

N

X
k>0

γ†kðτQÞγkðτQÞ; ð10Þ

where γkðτQÞ and γ†kðτQÞ are the fermionic Bogoliubov
operators at the end of the quench, and the sum is restricted
to k > 0 since the number of kink pairs equals the number
of right-moving kinks. Further, for free fermions (with
periodic boundary conditions), the time-dependent density
matrix ϱðtÞ retains the tensor product structure during
unitary time evolution, i.e., ϱðtÞ ¼⊗k ϱkðtÞ. As a result,
the moment-generating function admits the explicit form

heNθρ̂N i ¼
Y
k>0

Tr
h
ϱkðτQÞe θγ†kðτQÞγkðτQÞ

i

¼
Y
k>0

½1þ ðe θ − 1Þpk�; ð11Þ

where pk ¼ hγ†kðτQÞγkðτQÞi∈ ½0; 1� represents the proba-
bility that the mode k is excited at the end of the protocol.
This is the moment-generating function of a Poisson
binomial distribution associated with the sum of N=2
independent random Bernoulli variables, each of which
has probability pk for the occupation number to be 1,
corresponding to the formation of a kink-antikink pair, and
probability ð1 − pkÞ for the occupation number to be 0,
corresponding to no defect formation [35]. In addition, the
value of pk can be estimated according to the Landau-
Zener (LZ) approximation [7], pk ¼ hγ†kðτQÞγkðτQÞi ≈
expð−2πJτQk2=ℏÞ near k ¼ 0, dictating an exponential
decay with increasing quench time and a Gaussian decay
as a function of the wave number. This behavior dictates
the KZM scaling in a quantum phase transition [6,7,53]. The
explicit computation of the scaled cumulant generating
function, according to Eqs. (7) and (11), in the limit
N → ∞, yields

λðθÞ ¼
Z

π

0

dk
2π

ln½1þ ðeθ − 1Þpk�; ð12Þ

which is a convergent integral. For slow quenches, using a
power-series expansion in 1=τQ to leading order, or equiv-
alently extending the upper limit of the integral in Eq. (12) to
infinity, one finds

λðθÞ ¼ −ρKZMLi3=2ð1 − eθÞ; ð13Þ

in terms of the polylogarithm function LiqðxÞ ¼P∞
s¼1 x

s=sq. The exact expression in the slow-quench limit,
Eq. (13), shows that λðθÞ is differentiable for all values of θ,
ensuring the applicability of the Gärtner-Ellis theorem. We
verify that for θ ¼ 0, λð0Þ ¼ 0, consistently with its
definition. Further, for θ < 0, λðθÞ quickly approaches
the constant value λð−∞Þ ¼ −ρKZMζð3=2Þ, where ζ is
the Riemann ζ function. Indeed, λðθÞ is approximately
constant for θ < 0 and is a monotonic function of θ.
We define a dimensionless density of defects ρ̄≡

ρ=ρKZM in terms of which

IðρÞ ¼ ρKZM sup
θ∈R

½θρ̄þ Li3=2ð1 − eθÞ�: ð14Þ

As a result, the rate function (14) is universal in the sense
that Īðρ̄Þ ¼ IðρÞ=ρKZM varies only with ρ̄ and is indepen-
dent of the quench time τQ. This is the central result of our
work, which we elaborate and generalize in what follows.
Taking the derivative with respect to θ, one finds at the
supremum θ�:

ρ̄ ¼ −
eθ

�

eθ
� − 1

Li1=2
�
1 − eθ

��
: ð15Þ

The function θ�ðρ̄Þ and the rate function scaled by the KZM
density Īðρ̄Þ are found numerically. The rate function is
shown in Fig. 1. As the decay of the probability density
function PðρÞ is dictated by the rate function according to
Eq. (8), the minimum of Īðρ̄Þ at ρ̄ ¼ 1 is associated with the
most likely value of ρ̂N , which equals the mean value ρKZM
predicted by the KZM. Thus, LDT guarantees that the
KZM prediction holds with maximum probability. Figure 1
shows also that only the very large deviations of the defect
density ρ are sensible to the finite value of τQ. In particular,
the larger the quench time τQ, the closer the scaled rate
function Ī to the universal analytical prediction obtained
using the LZ approximation.
Concentration inequalities.—Let us tackle the problem

of large deviations from a complementary angle using
concentration inequalities [54]. To bound large deviations,
we make use of the Chernoff bound, which reads
PðρN > ρÞ ≤ heθρ̂N ie−θρ, for all θ > 0. The characteristic
function can be written as

heθρ̂N i ¼ exp

�
N
Z

π

0

dk
2π

ln½1þ ðeθ − 1Þpk�
�

≈ exp
	
−NρKZMLi3=2ð1 − eθÞ
: ð16Þ

We thus find from the Chernoff bound that

PðρN > ρÞ ≤ exp
�
−ρKZM

	
θρ̄þ Li3=2ð1 − eθÞ
� ð17Þ
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for all θ > 0. Tightening the above inequality by taking
the supremum of the exponent, the right tail of the
distribution is bounded as

PðρN > ρÞ ≤ exp½−NIðρÞ�; ð18Þ

with IðρÞ given by Eq. (14). Likewise, the left tail is bound
by the same term, PðρN < ρÞ ≤ exp½−NIðρÞ�. The loga-
rithm of the two-sided Chernoff bound is the rate function.
The above results establish the nature of large deviations
of kink-antikink pairs formed across the quantum phase
transition between the paramagnetic and the ferromag-
netic phase of the TFQIM. These results are generalizable
to the family of quasi-free-fermion models in which the
density of defects is given by the density of quasiparticles.
In addition, the universal form of the scaled cumulant
generating function and the rate function in the slow-
quench limit also hold when fast-decaying long-range
interactions are considered [47], further confirming their
universality under fast-decaying long-range deformations.
We next turn our attention to an arbitrary continuous phase
transition described by the KZM.
LDT beyond KZM: General scenario.—Consider a

scenario of spontaneous symmetry breaking leading to
the generation of pointlike defects in d spatial dimensions.
The KZM exploits the equilibrium scaling relations for the

correlation length ξ and the relaxation time τ, i.e.,

ξ ¼ ξ0
jεjν ; τ ¼ τ0

jεjzν ; ð19Þ

where ν and z are critical exponents and ξ0 and τ0 are
microscopic constants. The dimensionless variable ε ¼
ðgc − gÞ=gc quantifies the distance to the critical point gc,
and vanishes at the phase transition. Linearizing the
driving protocol in the neighborhood of gc as gðtÞ ¼
gcð1 − t=τQÞ, one identifies the quench time τQ. The KZM
sets the nonequilibrium correlation length to be ξ̂ ¼
ξ0ðτQ=τ0Þν=ð1þzνÞ [11,12]. During the phase transition,
the system is partitioned into protodomains of average
volume ξ̂d. A defect may be generated with an empirical
probability p at the merging point between adjacent
domains. For pointlike defects, the number of events
for defect formation is estimated asN ¼ Vd=ðfξ̂Þd, where
Vd is the volume in d spatial dimensions and f a fudge
factor of order one [37,55,56]. As a result, the number
of events scales as N ¼ ½Vd=ðfξ0Þd�ðτ0=τQÞdν=ð1þzνÞ.
Assume defect formation events at different locations to
be described by independent and identically distributed
discrete random variables Xi with i ¼ 1;…;N [37–40],
where the outcomeXi ¼ þ1 corresponds to the formation of
a topological defect, and Xi ¼ 0 corresponds to no defect
formation. The defect number distribution takes the binomial
form PðnÞ ¼ ðNn Þpnð1 − pÞN−n. Numerical studies support
this prediction in d ¼ 1, 2 for varying τQ [37–40].
Accordingly, the average number of topological defects is

given by ρKZM ¼ pN =Vd ∝ τ−dν=ð1þzνÞ
Q . The defect density,

an intensive random variable, is given by ρN ¼PN
i¼1Xi=Vd.

We are interested in estimating the probability distribution of
SN ¼ PN

i¼1 Xi whenN is large. Using the Stirling approxi-
mation, one finds

PðSN ¼ rN Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πrð1 − rÞNp e−VdρKZMDKLðrkpÞ=p; ð20Þ

where DKLðrkpÞ ¼ r lnðr=pÞ þ ð1− rÞ ln½ð1− rÞ=ð1−pÞ�
is the Kullback-Leibler distance between two Bernoulli
distributions with success probabilities r and p. It satisfies
DKLðrkpÞ ≥ 0, with the equality holding when r equals
p, which is the most probable value. Neglecting the
prefactor, we thus find that for large N , fluctuations of
the defect number away from the mean are suppressed
exponentially with increasing N , i.e., PðSN ¼ rN Þ≈
exp½−VdρKZMDKLðrkpÞ=p�. In this sense, the defect num-
ber distribution concentrates at the KZM prediction in the
thermodynamic limit when Vd andN diverge. Indeed, in the
spirit of LDT, we identify the rate function,

IðrÞ ¼ ρKZM
1

p
DKLðrkpÞ; ð21Þ

FIG. 1. Comparison of the scaled rate function Īðρ̄Þ ¼
IðρÞ=ρKZM derived analytically with the numerically exact
computation for a finite τQ and N. A TFQI chain, initialized
in its ground state, is driven by varying gðtÞ from gð−3τQÞ ¼ 4gc
to time τQ, when gðτQÞ ¼ 0. The cumulant generating function
λðθÞ is computed in the final nonequilibrium state using Eq. (7)
for finite N, from which the scaled rate function Ī is found with a
Legendre-Fenchel transform. As the quench time increases, the
agreement between numerics and the analytical solution based on
the LZ approximation improves visibly, while the agreement with
the central limit theorem (CLT) prediction, obtained by matching
the first and second cumulants, does not. The value at the origin
Īð0Þ ¼ ζð3=2Þ follows from Eq. (14), while the minimum Ī ¼ 0
is attained at ρ̄ ¼ 1 (diamond). Finite-size analysis reveals the
convergence of the numerically evaluated rate function Ī to the
thermodynamic limit for N ¼ 1000, which is used in this figure.
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generalizing the findings for the TFQIM to arbitrary
continuous phase transitions. Similarly, IðrÞ dictates the
universal suppression of deviations away from the KZM
prediction. For example, the right tail of the distribution is
bounded as

PðSN ≥ rN Þ ≤ exp½−VdIðrÞ�

¼ exp



−

Vd

ðfξ0Þd
�
τ0
τQ

�
dν=ð1þzνÞ

DKLðrkpÞ
�
:

ð22Þ
These results are fully consistent with LDT. Using
the dimensionless density of defect ρ̄≡ ρN =ρKZM ¼
ð1=pN ÞPN

i¼1 Xi, according to Sanov’s theorem in LDT
[42], Pðpρ̄¼ rÞ¼e−NDKLðrkpÞ. Thus, Pðρ̄Þ¼ exp½−VdIðρ̄Þ�,
where Iðρ̄Þ≡ ρKZMDKLðρ̄pkpÞ=p. The tails of the distri-
bution read then Pðρ̄ ≥ σÞ ≤ exp½−VdIðσÞ� as in Eq. (18).
Discussion.—The rate function governs the nature of

large deviations away from the mean, according to LDT.
Using the exact solution of the critical dynamics in the
TFQIM as a test bed, we have explored the nature of large
deviations in the number of topological defects generated
across a quantum phase transition driven in finite time, and
showed that the rate function is proportional to the KZM
density of kink pairs. The rate function exhibits a universal
power-law scaling with the quench time in which the phase
transition is crossed. We have further generalized these
findings to account for the dynamics of arbitrary continu-
ous phase transitions described by the KZM. We have thus
proved the KZM, showing that the defect density concen-
trates at the KZM prediction in the thermodynamic limit,
and provided a framework to characterize universal devia-
tions in current experiments with moderate system sizes.
Our results are of broad interest in nonequilibrium quantum
and classical statistical mechanics, connecting large devia-
tions with the breakdown of adiabatic dynamics, and
should find broad applications in quantum simulation,
quantum annealing, ultracold atom physics, and the study
of critical phenomena.
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