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Slow fluctuations of a qubit frequency are one of the major problems faced by quantum computers. To
understand their origin it is necessary to go beyond the analysis of their spectra. We show that characteristic
features of the fluctuations can be revealed using comparatively short sequences of periodically repeated
Ramsey measurements, with the sequence duration smaller than needed for the noise to approach the
ergodic limit. The outcomes distribution and its dependence on the sequence duration are sensitive to the
nature of the noise. The time needed for quantum measurements to display quasiergodic behavior can
strongly depend on the measurement parameters.
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Introduction.—Because of the probabilistic nature of
quantummeasurements, many currently implemented quan-
tum algorithms rely on repeatedly running a quantum
computer. It is important that the qubit parameters remain
essentially the same between the runs. This imposes a
constraint on comparatively slow fluctuations of the qubit
parameters, in particular qubit frequencies, and on develop-
ing means of revealing and charactetizing such fluctuations.
Slow qubit frequency fluctuations have been a subject

of intense studies [1–25]. Of primary interest has been
their spectrum, although their statistics has also attracted
interest [26–36]. This statistics may help to reveal the
source of the underlying noise. In particular, fluctuations
from the coupling to a few two-level systems (TLSs) should
be non-Gaussian [27,32,37–43]. They are particularly
important for solid state-based qubits, including those
based on Josephson junctions and spin and charge states
in semiconductors. Fluctuation statistics has been often
described in terms of higher-order time correlators. Most
work thus far has been done on fluctuations with the
correlation time smaller than the qubit decay time.
Here we show that important information about qubit

frequency fluctuations can be extracted from what we call
nonergodic measurements. The idea is to perform M
successive qubit measurements over time longer than the
qubit decay time but shorter than the noise correlation time.
The measurement outcomes are determined by the instan-
taneous state of the noise source, for example, by the
instantaneous TLSs’ states. They vary from one series ofM
measurements to another. Thus the outcome distribution
reflects the distribution of the noise source over its states. It
provides information that is washed out in the ensemble
averaging inherent to ergodic measurements.
Closely related is the question of how long should a

quantum measurement sequence be in order to reach the

ergodic limit. Does the measurement duration depend on
the type and parameters of the measurement, not only the
noise source properties, and if so, on which parameters?
A convenient and frequently used method of performing

successive measurements is to repeat them periodically. In
this case the duration of data acquisition of M measure-
ments is ∝ M. For the measurements to be nonergodic it
should suffice for this duration to be smaller than the noise
correlation time. This imposes a limitation on M from
above. The limitation on M from below is imposed by the
uncertainty that comes from the quantum nature of the
measurements.
We consider a periodic sequence of Ramsey measure-

ments sketched in Fig. 1. At the beginning of a measure-
ment, the qubit, initially in the ground state j0i, is rotated
about the y axis of the Bloch sphere by π=2, which brings it
to the state ðj0i þ j1iÞ= ffiffiffi

2
p

. After time tR the rotation is
repeated and is followed by a projective measurement
of finding the qubit in state j1i. The qubit is then reset to
j0i, cf. [44]. In our scheme the measurements are repeated
M ≫ 1 times, with period tcyc.

Ramsey      ResetRamsey      Reset

M

Ramsey      Reset

FIG. 1. Schematics of M Ramsey measurements. In each
measurement the qubit phase is accumulated over time tR. The
measurements give the probability p to find the qubit in state
j1i. After a measurement the qubit is reset to state j0i. The
measurements are repeated with period tcyc.
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The outcome of a kth Ramsey measurement xk is 0 or 1.
The probability p to find xk ¼ 1 is determined by the qubit
phase accumulated over time tR. This phase comes from the
detuning of the qubit frequency from the frequency of the
reference drive and from the noise-induced qubit frequency
fluctuations δωqðtÞ. The detuning is controllable, and we
will use ϕR to indicate the phase that comes from it. The
Hamiltonian Hfl that describes frequency fluctuations and
the phase θk accumulated in the kth measurement due to
these fluctuations have the form

Hfl¼−
1

2
δωqðtÞσz; θk ¼

Z
ktcycþtR

ktcyc

δωqðtÞdt ð1Þ

(we set ℏ ¼ 1); we associate the Pauli operators σx;y;z with
the operators acting on the qubit states. We are interested in
slow frequency fluctuations. The correlation time of δωqðtÞ
is ≳tcyc.
In terms of the phases θ and ϕR, the probability to have

xk ¼ 1 is [45]

pðθÞ ¼ 1

2

�
1þ e−tR=T2 cosðϕR þ θÞ

�
; ð2Þ

where T−1
2 is the qubit decoherence rate due to fast

processes leading to decay and dephasing. In the absence
of qubit frequency noise θ ¼ 0 for all M measurements
and the distribution of the measurement outcomes is a
binomial distribution [46]. Because of the frequency
noise, the phase θ in Eq. (2) becomes random, and thus
the probability pðθÞ also becomes random. The outcomes
distribution is determined by the distribution of the values
of θ. The sensitivity of pðθÞ to θ is reduced by errors in the
Ramsey gates, the preparation of the state j0i, and the
readout errors [47]. However, these errors are small.
Moreover, they do not change the qualitative features
of nonergodic measurements.
The randomness of the phase is captured by the

probability ρðmjMÞ to have xk ¼ 1 as a measurement
outcome m times in M measurements, ρðmjMÞ ¼
ProbðPM

k¼1 xk ¼ mÞ. We consider ρðmjMÞ for periodically
repeated measurements, see Fig. 1. If the frequency noise
has correlation time small compared to the period tcyc, the
phases θk in successive measurements are uncorrelated.
Then ρðmjMÞ is still given by a binomial distribution,

ρbinomðmjMÞ ¼
�
M

m

�
rm1 ð1 − r1ÞM−m; ð3Þ

where r1 ≡ hxki ¼ hpðθÞiθ; here h…iθ indicates averaging
over realizations of θ. For large M this distribution is close
to a Gaussian peak centered at r1.
We are interested in the opposite case of slow frequency

noise. Here the distribution ρðmjMÞ can strongly deviate

from the binomial distribution. The deviation becomes
pronounced and characteristic of the noise if Mtcyc is
comparable or smaller than the noise correlation time while
M is still large.
The effect is particularly clear in the static limit, where

the noise does not change over time Mtcyc, i.e., the phase θ
remains constant during M measurements. Even though θ
is constant, its value θ ¼ θðlÞ is random, it varies from one
series of M measurements to another. Here l enumerates
the possible discrete values of θ, which are determined, for
example, by the states of the TLSs, and we assume that
noise correlations decay between successive series. The
probability P½θðlÞ� to have a given θðlÞ is determined by
the noise statistics. The distribution of the outcomes
ρðmjMÞ is obtained by averaging the results of multiple
repeated series of M measurements. Extending the familiar
arguments that lead to Eq. (3), we find

ρðmjMÞ ¼
�
M

m

�X
l

P½θðlÞ�pm½θðlÞ�

× f1 − p½θðlÞ�gM−m: ð4Þ

The distribution (4) directly reflects the distribution of the
noise over its states. In particular, if the values of θðlÞ are
discrete and well separated (see an example below),
ρðmjMÞ has a characteristic fine structure with peaks
located at m ≈Mp½θðlÞÞ� for M ≫ 1; the peak heights
are determined by P½θðlÞ�.
An important example of slow frequency noise is the

noise that results from dispersive coupling to a set of slowly
switching TLSs,

ˆδωqðtÞ ¼
X
n

VðnÞðτ̂ðnÞz − hτ̂ðnÞz iÞ: ð5Þ

Here n ¼ 1;…; NTLS enumerates the TLSs, τ̂ðnÞz is the Pauli

operator of the nth TLS, hτ̂ðnÞz i is its average value, and VðnÞ
is the coupling parameter; the states of the nth TLS are

j0iðnÞ and j1iðnÞ, and τ̂ðnÞz jiiðnÞ ¼ ð−1ÞijiiðnÞ with i ¼ 0, 1.
We assume that the TLSs do not interact with each other.
Their dynamics is described by the balance equations for
the state populations. The only parameters are the rates

WðnÞ
ij of jiiðnÞ → jjiðnÞ transitions, where i, j ¼ 0, 1 [48].
The rates WðnÞ

ij give the stationary occupations of the

TLSs states wðnÞ
0;1 , with wðnÞ

0 ¼ WðnÞ
10 =W

ðnÞ, wðnÞ
1 ¼ 1 − wðnÞ

0 .

Parameter WðnÞ ¼ WðnÞ
01 þWðnÞ

10 is the TLS relaxation rate.
The value of minWðnÞ gives the reciprocal correlation time
of the noise from the TLSs. We disregard the effect of the
qubit on the TLSs dynamics, including measurements and
resets, assuming that the TLSs decoherence rates are much
larger than VðnÞ. This is a good approximation for low-
frequency TLSs coupled to solid-state based qubits.
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In the static-limit approximation, the TLSs remain in
the initially occupied states j0iðnÞ or j1iðnÞ during all M
measurements. Then, from Eq. (5), the phase that the qubit
accumulates during a measurement (before subtracting the
average accumulated phase) is θðfjngÞ ¼

P
nð−1ÞjnVðnÞtR.

Here jn ¼ 0 if the occupied TLS state is j0iðnÞ and jn ¼ 1 if
the occupied state is j1iðnÞ. The probability to have a given
θðfjngÞ is determined by the stationary state occupa-

tions, P½θðfjngÞ� ¼
Q

n w
ðnÞ
jn
.

For the TLSs’ induced noise, l in Eq. (4) enumerates
various combinations fjng. With the increasing coupling
VðnÞ, the separation of the values of θðfjngÞ increases,
helping to observe the fine structure of ρðmjMÞ.
The expression for ρðmjMÞ simplifies in the important

case where the TLSs are symmetric, wðnÞ
0 ¼ wðnÞ

1 ¼ 1=2,
and all coupling parameters are the same, VðnÞ ¼ V,
cf. [2,10]. In this case θðfjngÞ takes on values θsymðlÞ ¼
VtRð2l − NTLSÞ with 0 ≤ l ≤ NTLS, and

ρðmjMÞ ¼ 2−NTLS

�
M

m

�X
l

�
NTLS

l

�
pm½θsymðlÞ�

× f1 − p½θsymðlÞ�gM−m: ð6Þ

The phases θsymðlÞ are determined by the coupling con-
stant V multiplied by the difference of the number of TLSs
in the states j0i and j1i, so that θsymðlÞmay be significantly
larger than for a single TLS [47].
The probability ρðmjMÞ of having “1” m times in M

measurements has a characteristic form also in the case
of Gaussian frequency noise if the noise is slow, so that
δωqðtÞ does not change over time Mtcyc. An important
example of slow noise is 1=f noise. In the static limit

ρðmjMÞ is described by an extension of Eq. (4), which
takes into account that θ takes on continuous values.
Respectively, one has to change in Eq. (4) from the sum
over l to the integral over θðlÞ, with P½θðlÞ� becoming
the probability density. For Gaussian noise P½θðlÞ� ¼
ð2πf0Þ−1=2 exp½−θ2ðlÞ=2f0�, where f0 ¼ hδω2

qit2R (we
assume that hδωqi ¼ 0). The distribution ρðmjMÞ does not
have fine structure; it depends only on the noise intensity in
the static limit.
The opposite of the static limit is the ergodic limit, where

Mtcyc is much larger than the noise correlation time and the
noise has time to explore all states during the measure-
ments. In this limit ρðmjMÞ as a function of m=M has
a narrow peak at r1 ¼ hm=Mi≡P

mðm=MÞρðmjMÞ, with
h½ðm=MÞ − r1�ni ∝ M−n=2 for even n.
Simulations.—We performed numerical simulations to

explore the transition from the static to the ergodic limit and
the features of ρðmjMÞ for slow noise. Here we present the
results for tcyc ¼ 3tR. This ratio can be easily implemented
in experiment. For example, for transmons a limit imposed
by decay and fast dephasing is tR ≲ 0.3 ms, whereas
the gate duration is ≲25 ns and the reset time can be
≲0.5 μs [49–51]. Choosing tcyc of order of a few tR allows
applying the results to the noise in the kilohertz range,
which plays an important role in transmons. The simu-
lations were repeated at least 105 times. In Fig. 2 we show

ρðmjMÞ for the noise from symmetric TLSs, WðnÞ
01 ¼

WðnÞ
10 ¼ WðnÞ=2 (see [47] for other tcyc=tR and for the

results on asymmetric TLSs).
Figure 2 shows evolution of ρðmjMÞ with the varying

measurements number M. It is very different for different
numbers of TLSs and the measurement parameter ϕR. The
figure refers to a relatively weak qubit-TLS coupling.
Panel (a) refers to a single TLS. Here, in the static limit

FIG. 2. Transition from nonergodic to ergodic behavior with the increasing number of measurements. Red diamonds, blue crosses,
green dots, purple triangles, and orange squares in panels (a)–(c) show ρðmjMÞ for M ¼ 30; 102; 103; 104, and 105, respectively. The
scaled parameter of the dispersive qubit-to-TLS coupling is VtR ¼ 0.2. The control parameter ϕR is π=4 in (a) and (b). (a) Coupling to a
single symmetric TLS with the scaled switching rate WtR ¼ 1.2 × 10−4. (b) Coupling to 10 symmetric TLSs with the switching rates
WðnÞtR ¼ expð−3n=4Þ, n ¼ 3; 4;…; 12. The inset shows the results for Gaussian 1=f-type noise described in the text, f0 ¼ hδω2

qit2R.
(c) Coupling to the same 10 TLSs as in panel (b), but for ϕR ¼ 0. (d) Variance of ρðmjMÞ for the data in panels (a)–(c); solid lines show
the theory; data points show the results of the simulations; dashed lines show the ergodic limit.
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ρðmjMÞ is double peaked, with the peaks at m=M ≈ 0.92
and 0.78, from Eq. (6). Such peaks are seen for M ¼ 102;
103; and 104, where MWtcyc varies from 0.036 to 3.6, even
though one might expect the system to be close to ergodic
for M ¼ 104. For M ¼ 30 the fine structure is smeared,
becauseM is not large enough to average out the uncertainty
of quantum measurements, but ρðmjMÞ displays a signifi-
cant and characteristic asymmetry. For M ¼ 105, where
MWtcyc ¼ 36, the distribution does approach the ergodic
limit, with a single peak at m=M ≈ 0.85 [47].
Figure 2(b) refers to 10 TLSs. Their scaled switching

rates WðnÞtcyc form a geometric series, varying from ≈0.32
to ≈3.7 × 10−4. The power spectrum of the noise δωqðtÞ is
close to 1=f in a broad frequency range for such form of
WðnÞ [47]. However, for the chosen WðnÞtcyc the static limit
does not apply and the fine structure is not resolved. The
asymmetry of ρðmjMÞ is profound. It gradually decreases
with the increasing M. It is important that, for ϕR ¼ π=4,
the distribution approaches the ergodic limit for
Mtcyc × ðminWðnÞÞ≳ 30, similar to the case of one TLS
(the choice ϕR ¼ π=4 is explained in [47]).
For comparison, the inset in Fig. 2(b) shows the

evolution of ρðmjMÞ for 1=f-type Gaussian frequency
noise δωqðtÞ with the power spectrum SqðωÞ ¼
ð2D=πÞ R∞

ωmin
dW=ðW2 þ ω2Þ. The cutoff frequency ωmin

is set equal to the minimal switching rate of the 10 TLSs in
the main panel minðWðnÞÞ, and the intensity D is chosen so
that, in the ergodic limit, ρðmjMÞ has a maximum for the
same m=M as for the 10 TLSs.
The result of Fig. 2(c) is surprising. The data refers to the

same 10 TLSs as in panel (b), except that the phase of the
Ramsey measurement is set to ϕR ¼ 0. The change of ϕR
does not affect the dynamics of the TLSs. However, for the
sameM values, the peak of ρðmjMÞ is much narrower than
for ϕR ¼ π=4 and ρðmjMÞ approaches the ergodic limit for
an order of magnitude smaller M.
A simple measure of closeness of ρðmjMÞ to the ergodic

limit is the variance σ2M ¼ P
mðm=MÞ2ρðmjMÞ − r21,

where r1 ¼ hxki. It is expressed in terms of the pair
correlator of xk [47]. In the ergodic limit σ2M ∝ M−1, but
its value depends on the noise correlation. Figure 2(d)
shows how σ2M approaches the ergodic scaling [52]. For
ϕR ¼ π=4 and the same correlation time of the noise from 1
or 10 TLSs and of Gaussian noise (∼1=minWðnÞ and
∼1=ωmin), σ2M behaves similarly for large M. Yet, for the
same 10 TLSs, but for ϕR ¼ 0 the variance approaches the
ergodic limit much faster.
The fine structure of ρðmjMÞ is more pronounced for

larger scaled coupling jVjtR. For example, for one TLS the
interpeak distance is ≈ sinðVtRÞ sinϕR. It is important
that the coupling parameter VtR can be changed in the
experiment by varying tR. The ratio between Mtcyc and the
noise correlation time can be changed, too, and not only

by varying M (which affects the statistics), but also by
varying tcyc. The fine structure is more pronounced for
smaller tcyc [47].
In a qualitative distinction from the power spectrum of

the frequency noise, which has the same form for a
symmetric and an asymmetric TLS, ρðmjMÞ sensitively
depends on the TLS asymmetry. In particular, ρðmjMÞ ¼
ρðM −mjMÞ for ϕR ¼ π=2 for symmetric TLSs, whereas
for asymmetric TLSs ρðmjMÞ ≠ ρðM −mjMÞ; the fine
structure is also better resolved for ϕR ¼ π=2 [47]. This
shows that nonergodic measurements can be used to
characterize the coupling to low-frequency TLSs, where
the standard technique of tuning a qubit in resonance with a
TLS does not apply.
The presence of a characteristic fine structure of ρðmjMÞ

is an unambiguous indication of the noise coming from the
coupling to slow TLSs. Observing it would be a long-
sought direct proof of the nature of the low-frequency
noise, which was early on associated with, but not directly
proved to be caused by, TLSs [2]. For large NTLS it
becomes more complicated to characterize individual
TLSs using ρðmjMÞ as the peaks of ρðmjMÞ start over-
lapping. However, for small NTLS ≲ 5 our simulations
show that the number of peaks of the fine structure and
their amplitudes and shapes still enable estimating the
number and the parameters of slow TLSs.
For 10 TLSs, as seen in panel (b), the distribution is

broad and strongly asymmetric. Both its shape and the
position of the maximum sensitively depend on the
coupling. We note the distinction from direct measurements
of qubit frequency as a function of time [3,6,21], which is
efficient for still much slower noise.
Nonergodic measurements are more revealing in terms of

themechanismof low-frequency noise than the ergodic ones
[52], particularly where the fine structure is pronounced. In
addition to tR, tcyc, and ϕR, they have M as an important
control parameter. However, the two methods complement
each other. Besides the TLSs, nonergodicmeasurements can
be used to study other low-frequency noise sources, such as
the noise fromphotons in a superconducting cavity and from
nuclear spins in electron spin based qubits.
Discussion of ergodicity.—To reach ergodic limit, a

system of 10 TLSs has to visit its 210 states. The needed
time is a property of the TLSs themselves. However, the
results of the measurements can approach a quasiergodic
limit, except for the far tail of the outcomes distribution,
over a shorter time. This time depends on the correlation
time of the fluctuations relevant for the measurement, but
this correlation time is not obvious in advance. In our setup,
the noise is “measured” by the qubit, and then the results
are read through Ramsey measurements. As we show, an
important parameter is the qubit-to-TLSs coupling, which
we chose to be the same for all TLSs to avoid any bias.
Unexpectedly, there is another important parameter, the
phase ϕR.
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The effect of ϕR on the convergence to the ergodic limit
is not obvious in advance. It is seen already in the
dependence on ϕR of the centered correlator r̃2ðkÞ of the
measurement outcomes. For weak coupling to slowly
switching TLSs, VðnÞtR ≪ 1 and WðnÞtR ≪ 1, and for
jϕRj ≪ 1 this correlator is small. Moreover, it falls off
with the increasing k much faster than for ϕR ¼ Oð1Þ [47].
This indicates a reduced role of slow noise correlations for
small ϕR. Respectively, the ergodic limit is reached much
faster with the increasing M.
Conclusions.—We studied the distribution of the out-

comes of periodically repeated Ramsey measurements with
the sequence length Mtcyc shorter than needed to approach
the ergodic limit. Such distribution proves to provide an
alternative, and sensitive, means of characterizing qubit
frequency noise with a long correlation time. In contrast
to bi- or trispectra, such distribution incorporates noise
correlators of order M ≫ 1. The analytical results and
simulations show that, for non-Gaussian noise, in particular
the noise from TLSs, the distribution can display a
characteristic fine structure. Even where there is no fine
structure, the form of the distribution and its evolution with
the sequence length are noise specific.
The results show that the way the system approaches the

ergodic limit with the increasing number of quantum
measurements depends not only on the noise source but
also on the character and parameters of the measurement.
These parameters are not necessarily known in advance.
Their effect can be strong and depends on the noise source.
Measurement outcomes can practically approach the ergo-
dic limit well before the noise source approaches this limit.
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