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Connecting polymer network fracture to molecular-level chain scission remains a quandary. While the
Lake-Thomas model predicts the intrinsic fracture energy of a polymer network is the energy to rupture a
layer of chains, it underestimates recent experiments by ∼1–2 orders of magnitude. Here we show that the
intrinsic fracture energy of polymerlike networks stems from nonlocal energy dissipation by relaxing
chains far from the crack tip using experiments and simulations of 2D and 3D networks with varying
defects, dispersity, topologies, and length scales. Our findings not only provide physical insights into
polymer network fracture but offer design principles for tough architected materials.
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Polymer networks are the molecular scaffolds that form
the basis of materials in a wide range of both common and
highly specialized applications, including consumer prod-
ucts (e.g., tires, rubber bands, contact lenses) [1], biomedi-
cal implants [2] and soft electronic devices [3]. The lifetime
of polymer networks is limited by their fracture, which is
characterized by the energy required to propagate a crack
per newly created surface area [4]. This energy typically
has contributions from bulk dissipation and elastically
active structures within the material [5]. The contribution
from the latter is known as intrinsic fracture energy [6,7].
As established by Griffith in the 1920s [8], the intrinsic
fracture energy of glass can be considered as the energy
required to break a layer of atomic bonds, i.e.,
Γ0 ¼ MUbond, where M is the number of broken atomic
bonds per unit created area and Ubond is the bond
dissociation energy of a single atomic bond [Fig. 1(a)].
Although this simple model semiquantitatively explained
the fracture of some hard materials, the intrinsic fracture
energy of polymer networks has been found to be several
orders of magnitude larger than just that of breaking a
single layer of atomic bonds [9].
Lake and Thomas explained this phenomenon in 1967

by connecting the intrinsic fracture energy of polymer
networks to the rupture of covalent polymer chains [10].
This model predicts that the intrinsic fracture energy is
equal to the number of broken bridging polymer chains per
unit created area (M) multiplied by the work to rupture a
bridging polymer chain (Uchain), i.e., Γ0 ¼ ΓLT ¼ MUchain
[Fig. 1(b)]. During crack propagation, the energy stored in
the bridging polymer chains is dissipated after the chains
are broken. The Lake-Thomas model has been widely
applied to explain experimental data and predict intrinsic
fracture energy [11–13]. Recent experiments [14,15],
however, indicate that the Lake-Thomas model has also

significantly underestimated the intrinsic fracture energy of
polymer networks by ∼1–2 orders of magnitude (see
Table I). Modified models have been proposed to ration-
alize this underestimate [7,15–17], but these models cannot
fully explain the orders of magnitude discrepancy between
the Lake-Thomas model and experimental results. This
discrepancy implies the potential for nonlocal energy
release and dissipation even within well-formed gels that
are highly elastic. This is further supported by recent
studies on brittle hydrogels [18,19], which suggest the
existence of a nonlocal process zone around the crack tip.
In this Letter, we investigate the fracture of generic

networks that consist of polymerlike chains across multiple
length scales. We find that the intrinsic fracture energy of
the network is orders of magnitude greater than the energy
required to rupture a single layer of polymer chains. This

FIG. 1. Intrinsic fracture energy. (a) In Griffith’s theory, the
intrinsic fracture energy equals the energy needed to break a
single layer of atomic bonds. (b) In the Lake-Thomas model, the
intrinsic fracture energy equals the energy needed to break a
single layer of polymer chains. (c) Our study suggests that the
intrinsic fracture energy mainly results from nonlocal energy
dissipation by relaxing polymer chains far away from the crack
tip and is orders of magnitude higher than Lake-Thomas
prediction.
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discrepancy arises because energy is released and dissi-
pated from the relaxation of polymer chains far beyond the
crack tip when a bridging chain ruptures [Fig. 1(c)].
We adopt the modified freely jointed chain model

(m-FJC) [21] to describe the force-extension dependence
of chains. The m-FJC model considers both the conforma-
tional entropic elasticity of the polymer chain and the
energetic elasticity of backbone bonds (e.g., bond stretch-
ing and bending). The relationship between its stretch λ and
reaction force f can be written as [21]
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where the parameters KS and KE are the soft entropic
modulus [Fig. 2(a), blue] and the stiff energetic modulus
[Fig. 2(a), red] of the polymer chains, respectively
(KE ≫ KS for typical polymer chains) [22]. The parameter
λlim is the entropic stretch limit beyond which the force
increases rapidly due to the deformation of backbone
bonds.
To model the fracture of polymerlike networks, we start

with 2D samples with triangular lattices consisting of n
nodes and e edges [Fig. 2(b)]. Each edge is modeled by a
nonlinear spring with initial end-to-end distance r0 and
force-stretch relation fðλÞ defined in Eq. (1) [29,30]. To
further capture the fracture of a polymer chain, the non-
linear spring is set to break at a force ff with stretch λf. In
the simulation, clamped boundary conditions are applied to
the top and bottom surfaces, which quasistatically stretch
the sample from an initial height of h0 to a height of h. The
deformation of the lattices is fully described by the
coordinates of every node ðxi; yiÞ, where i ¼ 1;…; n. At
each loading step, the total energy of the system is obtained
by summing the elastic energy of every spring:

Utotal ¼
X
i;j

Z
λij

1
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where λij ¼ r−10
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q
is the stretch of

the edge connecting node i with j. The coordinates of each
node ðxi; yiÞ are then numerically determined by minimiz-
ing Utotal using Newton’s method in MATLAB.
Additionally, if λij > λf, which indicates that the edge

connecting nodes i and j has broken, this edge will be
removed from the lattice for future steps (see numerical
details in the Supplemental Material [31], Sec. S2). To
measure the intrinsic fracture energy of a given network, we
perform the pure shear test [4]. This includes two steps:
(i) load a notched sample to the point where the bridging
chain breaks and record the critical height of the sample hc;
(ii) load an unnotched sample and record the nominal stress
as a function of sample height h [Fig. 2(b)]. The intrinsic
fracture energy of the network is then calculated as

Γ0 ¼
Z

hc

h0

sdh; ð3Þ

where s is the nominal stress of the unnotched sample. The
value of Γ0 is an intrinsic property of the network and is
size independent, provided the network is sufficiently large.
For polymerlike networks with KE ≫ KS, a converged

TABLE I. The ratio of experimentally measured intrinsic
fracture energy, Γ0, to the predicted values according to the
Lake-Thomas model, ΓLT. These experimental results indicate
that the Lake-Thomas model underestimated the intrinsic fracture
energy of polymer networks by ∼1–2 orders of magnitude.

Wang et al.
[20]

Lin et al.
[7]

Akagi et al.
[12]

Barney et al.
[15]
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FIG. 2. Intrinsic fracture energy of polymerlike networks. (a) A
single strand is governed by a strongly nonlinear force-stretch
curve, with a long, soft entropic part characterized by a modulus
KS and a short, stiff energetic part characterized by a modulus
KE. (b) To measure the intrinsic fracture energy of polymerlike
networks, a pure shear test is conducted. (c) The intrinsic fracture
energy Γ0 of polymerlike networks with different ratios of
KE=KS (solid line) compared to a network consisting of linear
chains (triangular marker). These results are obtained from
numerical simulations under quasistatic loading conditions.
Parameters KS and KE are taken from the single-molecule force
spectroscopy experiments of different polymers: poly (acrylic
acid) (PAA) [23], poly (vinyl alcohol) (PVA) [24], polyisoprene
[25], poly(acryl amide) (PAAM) and poly(N-isopropyl acryla-
mide) (PNIPAM) [26], poly(dimethylacrylamide) (PDMA) and
poly(diethylacrylamide) (PDEA) [27], and poly(ethylene glycol)
(PEG) [28].
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value of Γ0 requires a significantly large sample, typically
containing over 1000 layers of chains (see Supplemental
Material [31], Sec. S2.4 for convergence studies).
Using a sufficiently large sample with 4000 layers, we

calculate the fracture energies Γ0 of the polymerlike net-
works with a wide range of KE=KS values and compare
them to the Lake-Thomas predictions, i.e., ΓLT ¼ MUchain.
Parameters KE and KS are taken from reported single-
molecule force spectroscopy (SMFS) experimental results
of different polymers that use the m-FJC model as the
fitting function. As shown in Fig. 2(c), Γ0=ΓLT is signifi-
cantly larger than unity for all networks with polymerlike
chains. This phenomenon is closely linked to the non-
linearity of the force-stretch behavior of the polymerlike
chains, as Γ0=ΓLT increases with KE=KS. Notably, when
we use linear springs to model the chains, the ratio Γ0=ΓLT
nears the expectation of the Lake-Thomas model
(triangular marker). These results emphasize that the
force-extension relationship of chains directly affects the
intrinsic fracture energy of polymerlike networks.
To assess the generality of our findings, we conduct

additional simulations that investigate the impact of inho-
mogeneities, defects, and lattice topologies on the intrinsic
fracture energy of polymerlike networks. Specifically, we
feature the PEG-like chain with KE=KS ¼ 1.8 × 104 and
examine the intrinsic fracture energy of irregular networks
[lattices with dispersed edge lengths, Fig. 3(a)] and net-
works with dangling chains [lattices with missing edges,
Fig. 3(b)]. Unsurprisingly, we find that these defected

networks retain large Γ0=ΓLT ratios. Different topologies,
including triangular, square, and hexagonal lattices, along
with 3D diamond cubic lattices are also investigated with
various KE=KS ratios. Figure 3(c) shows that increasing
chain nonlinearity leads to a magnifying trend of Γ0=ΓLT in
different 2D lattice topologies, where the hexagonal lattice
exhibits relatively higher fracture energy due to its larger
loop size [17,38–40]. A similar trend is also observed in the
3D diamond cubic network [Fig. 3(d)]. These results
signify that more chain nonlinearity leading to a higher
Γ0=ΓLT is a universal phenomenon, regardless of lattice
topology or dimensionality. These numerical results are
consistent with recent experimental findings [7,12,15,20]
showing that the intrinsic fracture energy of polymer
networks can be significantly larger than the values
predicted by the Lake-Thomas model (see Table S1,
Supplemental Material [31]).
To further understand the anomalously high intrinsic

fracture energy of polymerlike networks, we investigate the
behavior of chains near the crack tip [Fig. 4(a)] by
comparing networks of PEG-like chains to those with
linear elastic chains. The strain energy distributions of
the two networks just prior to the fracture of a chain are
shown in Fig. 4(b), where the color indicates the energy on
each chain normalized by the work to rupture a single chain
Uchain. Notably, the energy distribution of the PEG network
is clearly nonlocal when contrasted to the network with
linear chains, where the energy is concentrated in the one or
two layers nearest to the crack tip. We therefore postulate
that for polymerlike networks, the abnormally high ratio of
Γ0=ΓLT is predominantly due to nonlocal energy dissipa-
tion by the relaxation of chains distant from the crack tip.
To test this hypothesis, we analyze the released energy of
each chain, which is defined by the energy difference
before and after the fracture of a single chain at the crack
tip. The Lake-Thomas model predicts the released energy
of the broken chain contributes to the overall intrinsic
fracture energy of the network. This is qualitatively true for
the network consisting of chains with linear elasticity,
where the major energy release is limited to a relatively
confined zone around the crack tip [e.g., ∼1–2 layers
Fig. 4(c), top]. However, for the network of PEG-like
chains, even chains far away from the crack tip (e.g., > 20
layers) release a significant amount of energy after the
rupture of a single chain at the crack tip. The released
energy is then converted into kinetic energy in the network
and is eventually dissipated.
To investigate where and how the released energy is

dissipated, we establish a spring-mass model to simulate
the dynamic process upon the fracture of a chain at the
crack tip until a new equilibrium is reached. When a
bridging chain ruptures, the tension on the bridging chain
suddenly vanishes, and other junctions in the network
continuum are not balanced. The elastic energy stored in
the continuum is then released and becomes the kinetic
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FIG. 3. Generality of elevated intrinsic fracture energy in
polymerlike networks. (a) Intrinsic fracture energy of irregular
networks with dispersed edge lengths, with variations ranging
from 0% to 50%, and (b) networks with missing chains ranging
from 0% to 20%. Both (a) and (b) are based on single strands with
KE=KS ¼ 1.8 × 104 (PEG chains). Intrinsic fracture energy of
networks with (c) different 2D topologies, including triangular,
square, and hexagonal lattices, and (d) 3D diamond cubic lattices
for varying KE=KS ratios.
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energy of the junctions. In real polymer networks, the
energy released from the network continuum is damped by
the relaxation of both broken and unbroken polymer
chains, and eventually dissipated as heat. To damp the
kinetic energy induced by the chain breaking in our
simulated network, we implement viscous damping on
every node of the lattice. Unlike dynamic fracture [41–43],
we aim to investigate the intrinsic fracture energy of
polymerlike networks, under conditions by which the crack
velocity approaches zero. Therefore, the network was
deformed quasistatically as previously mentioned and set
to be overdamped to mitigate potential dynamic effect. The
total damped energy throughout this process is recorded
and shown in Fig. 4(d). To provide a more quantitative
comparison, we present the total damped energy as a
function of layer number from the crack tip in Fig. 4(e).
In stark contrast to linear networks (dashed line) where
most of the energy is damped near the crack tip, the
polymerlike network (solid line) dissipates much more
energy through chains far away from the crack tip; this
eventually leads to the high ratio of Γ0=ΓLT. With the same
Uchain, a network made from polymerlike chains is much
tougher than that made from chains with linear elasticity.
Additionally, the ratio Γ0=ΓLT provides insight into the
spatial extent of the dissipation zone, quantified in terms of
the layers of chains (see Supplemental Material [31],
Sec. 2.3.2 for details).
Finally, in order to experimentally validate our findings,

we fabricated macroscopic architected materials that con-
sist of polymerlike strands. Specifically, each strand was
produced by laser cutting (model: Epilog Zing 24 60 W) an

Acetal Film (semi-clear white, 0.003” thick, McMaster-
Carr) into an initially folded ribbon. The ribbon-shaped
strand is designed to mimic the force-extension behavior of
polymer chains, with a soft initial unfolding followed by a
stiff stretching upon loading [44]. The former corresponds
to the “entropic stiffness,” while the latter corresponds to
the “energetic stiffness.” This results in a ratio of energetic
to entropic stiffness KE=KS ≈ 800 [Fig. 5(a)]. To test the
intrinsic fracture energy of this architected material, ribbon
strands are connected into a triangular lattice [Fig. 5(b)].
Tensile tests are performed to obtain the force-stretch curve
for the unnotched sample [Fig. 5(c), black solid curve] and
the critical height hc for the notched sample (red solid line,
see Supplemental Material [31], Sec. 3 for fabrication and
testing details). The measured intrinsic fracture energy of
the network is significantly higher than that predicted by
the Lake-Thomas model, with Γ0=ΓLT ¼ 5.57. Furthermore,
simulations of the network using the experimentally deter-
mined force-stretch curves for each strand match the
experimental results for both notched and unnotched sam-
ples, yielding a similar Γ0=ΓLT ¼ 5.61 with an error of only
0.7%. These experiments not only validate the accuracy of
our simulations but also demonstrate a new approach to
designing ultratough architected materials by engineering
the force-stretch response of individual strands.
In this Letter, we have demonstrated that the Lake-

Thomas model underestimates the intrinsic fracture energy
of polymerlike networks by more than an order of magni-
tude, even if the networks are purely elastic with latticelike
topology [45–47]. Our experimental and numerical analy-
ses reveal that this discrepancy arises from significant
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energy release and dissipation far from the crack tip, rather
than solely in the bridging chain. We show that this
nonlocal intrinsic fracture energy is strongly connected
to the high nonlinearity of the force-extension relation and
the abrupt breaking of polymer chains. Our findings
provide implications for the mechanics of real polymer
networks and designing metamaterials. For real polymer
networks, our results indicate that the released or dissipated
energy per broken chain is inherently larger than the work
to rupture a single chain. For metamaterials, our results
indicate that high toughness and resilience can be obtained
by controlling the nonlinear mechanics of the constituent
architected chains. Future directions could involve

exploring the relationship between the network structure
and the intrinsic fracture energy, as well as investigating the
effect of defects and inhomogeneities in the network on its
mechanical properties. Moreover, our findings could be
extended to other materials, such as ultratough structures,
soft matter and biomaterials, with implications for a wide
range of applications, including aircraft, space vehicles, and
tissue engineering.
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