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Dynamical fluctuations or rare events associated with atypical trajectories in chaotic maps due to specific
initial conditions can crucially determine their fate, as the may lead to stability islands or regions in phase
space otherwise displaying unusual behavior. Yet, finding such initial conditions is a daunting task
precisely because of the chaotic nature of the system. In this Letter, we circumvent this problem by
proposing a framework for finding an effective topologically conjugate map whose typical trajectories
correspond to atypical ones of the original map. This is illustrated by means of examples which focus on
counterbalancing the instability of fixed points and periodic orbits, as well as on the characterization of a
dynamical phase transition involving the finite-time Lyapunov exponent. The procedure parallels that of the
application of the generalized Doob transform in the stochastic dynamics of Markov chains, diffusive
processes, and open quantum systems, which in each case results in a new process having the prescribed
statistics in its stationary state. This Letter thus brings chaotic maps into the growing family of systems
whose rare fluctuations—sustaining prescribed statistics of dynamical observables—can be characterized
and controlled by means of a large-deviation formalism.
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Introduction.—The study of dynamical large deviations
deals with fluctuations of time-averaged observables whose
probabilities are exponentially suppressed in time [1–3].
This field has been enriched in recent years by the
possibility of constructing effective processes where those
rare fluctuations are made typical, i.e., are transformed into
high-probability events. This allows for controlling, on
demand, the statistics of trajectory observables, which is
especially relevant in the context of dynamical phase
transitions, allowing, e.g., for the selection of certain
dynamical phases that are otherwise extremely unlikely
to be observed [4,5]. The methodology combines biased
ensembles of time-averaged observables [6,7] with the
generalized Doob transform [8–12], and has been recently
applied in stochastic systems, including lattice gas models
[4,13–15], continuum diffusive systems [11,12,16,17], and
many-body systems, both classical [18] and quantum
[19–21].
Deterministic dynamical systems are of a different

nature, yet they also require a probabilistic description
when their evolution is considered from a distribution of
initial conditions, which is particularly relevant in the study
of chaotic systems [22]. In that respect, the focus of the
literature on large deviations of chaotic systems from the
last decades of the past century revolves around observ-
ables arising in the context of information theory and
fractal geometry [23]. A large-deviation approach to
chaotic systems based on observables as general as those

considered in stochastic systems, however, seems to have
become available only relatively recently. Among those
contributions, we highlight the Lyapunov weighted dynam-
ics [24–26], a computational adaptation of the cloning
algorithm [27,28] to Hamiltonian systems for selecting
trajectories with unusual chaoticity, and the recent exten-
sion of the large-deviation formalism to general time-
averaged observables in chaotic maps [29]. Despite these
advances, the adaptation of the generalized Doob trans-
form, whereby the dynamics creating those rare trajectories
is unveiled—thus giving a powerful handle on the analysis
and control of large fluctuations—has not yet been accom-
plished for chaotic maps. This is a conspicuous gap in the
literature that we aim to fill with the present work.
In this Letter, we propose a framework for constructing

effective maps whose natural invariant measures are tail-
ored to the statistics of general trajectory observables of a
given original map. The study of rare events of chaotic
maps is thus brought to a level of development that is
comparable to that found in recent studies on various types
of stochastic systems [4,13,14,18,20]. The goal is illus-
trated in Fig. 1, which shows an application of our
framework to the tent map [23], xnþ1 ¼ 1 − j1 − 2xnj
[displayed in Fig. 1(a); see Fig. 1(b) for a representative
trajectory corresponding to the cobweb plot]. Rare events
given by trajectories with an unusually large time spent in a
narrow interval centered around the unstable fixed point
x� ¼ 2=3 [see Fig. 1(c)], become typical in a new effective

PHYSICAL REVIEW LETTERS 131, 227201 (2023)

0031-9007=23=131(22)=227201(6) 227201-1 © 2023 American Physical Society

https://orcid.org/0000-0001-9113-137X
https://orcid.org/0009-0005-8949-1364
https://orcid.org/0000-0002-1016-4901
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.131.227201&domain=pdf&date_stamp=2023-11-29
https://doi.org/10.1103/PhysRevLett.131.227201
https://doi.org/10.1103/PhysRevLett.131.227201
https://doi.org/10.1103/PhysRevLett.131.227201
https://doi.org/10.1103/PhysRevLett.131.227201


map [see Fig. 1(d)], as illustrated in the histogram
[Fig. 1(f)] obtained from its trajectories [a representative
one is displayed in Fig. 1(e)].
The structure is as follows. We first show how, by

extending the generalized Doob transform to the context of
Frobenius-Perron operators of chaotic maps, one can
generate topologically conjugate effective maps where rare
fluctuations of the original dynamics become typical. Then
we illustrate our framework by applying it to mitigate the
repulsive effect of unstable periodic orbits. Finally, we
employ it to characterize dynamical phases involved in a
dynamical phase transition associated with the finite-time
Lyapunov exponent in the logistic map. Concluding
remarks and ideas for future work are presented at the end.
Large-deviation formalism.—We consider a chaotic

discrete-time dynamical system xnþ1 ¼ fðxnÞ, where
f∶ I → I is a smooth map and I is some compact interval
of the real line. Starting from a probability density of initial
values α0ðxÞ, the evolution αnþ1ðxÞ ¼ L½αnðxÞ� for n ¼
0; 1; 2;… is given by the Frobenius-Perron operator
L½αðxÞ� ¼ R

I αðyÞδ(x − fðyÞ)dy, where δðxÞ is a Dirac
delta [23]. We assume that the map f is ergodic with
respect to an invariant measure ρðxÞ ¼ L½ρðxÞ�. The adjoint
Frobenius-Perron operator L† is defined by the equality
hβ; L½α�i ¼ hL†½β�; αi, where the angular brackets denote
the standard inner product, yielding L†½αðxÞ� ¼ αðfðxÞÞ;
see the Supplemental Material (SM) for details [30].
Taking βðxÞ ¼ 1ðxÞ ¼ 1 above, it is clear that probability
conservation, i.e.,

R
L½αðxÞ�dx ¼ R

αðxÞdx ¼ 1, implies
that L†½1ðxÞ� ¼ 1.

Under quite general conditions, the probability density
of the time-averaged observable A ¼ N−1PN−1

n¼0 gðxnÞ
acquires the asymptotic large-deviation form PðA ¼ aÞ ∼
e−NIðaÞ for long times N ≫ 1 [32,33]. This probability
concentrates around its average value, hAi ¼ R

gðxÞρðxÞdx,
at a rate given by IðaÞ—the so-called rate function—which
is non-negative and has a single zero located at hAi [2].
Thus fluctuations different from hAi become exponentially
unlikely in time, and the expansion up to second order of
IðaÞ around the mean displays Gaussian fluctuations with
variance σ2 ¼ ½NI00ðhAiÞ�−1. This is illustrated in Fig. 1(c),
where the probability of the time-averaged indicator
function A ¼ N−1PN−1

n¼0 I½x��0.05�ðxnÞ, with IΩðxÞ ¼ 1 if
x∈Ω and zero otherwise, concentrates around hAi ¼ a1.
The conventional method for biasing these probabilities

towards specific values of A is to introduce an ensemble of
trajectories—known as the s ensemble [1]—such that
PsðaÞ ¼ e−sNaPðaÞ=ZðsÞ with ZðsÞ ¼ R

e−sNaPðaÞda.
Here s is a biasing field which favors (for s < 0) or
suppresses (for s > 0) the probability of having values
larger than hAi. Thus in Fig. 1 a suitable choice of s ¼
s0 ¼ −1 transforms the probability PðaÞwith average a1 ¼
0.1 [Fig. 1(c)], into the probability Ps0ðaÞ with average
a2 ≈ 0.78 [Fig. 1(f)], which is an unusually large value in
the case of the tent map. Indeed, Pða2Þ ∼ e−NIða2Þ is on the
order of 10−18 for N ¼ 100 [see its position far into the
right tail of PðaÞ in Fig. 1(c)].
In this biased ensemble, the complete statistics of the

time-averaged observable A for long times is given by
the scaled cumulant-generating function (SCGF) θðsÞ ¼
limN→∞N−1 logZðsÞ [7]. The latter is related to the
rate function IðaÞ by a Legendre transform, θðsÞ ¼
−mina½IðaÞ þ sa� [2], highlighting the analogy with the
(minus) free-energy and the entropy density in equilibrium
statistical mechanics, with the biasing field s playing a role
akin to that of the inverse temperature [7]. Since the
derivatives of the SCGF provide the cumulants of the
observable A in the tilted distribution PsðaÞ, the (minus)
first derivative gives the average −θ0ðsÞ ¼ hAis. Thus the
value of choice for s is the one matching the fluctuation a,
such that −θ0ðsÞ ¼ a, or equivalently I0ðaÞ ¼ s. In Fig. 1,
−θ0ðs0Þ ¼ a2 and I0ða2Þ ¼ s0, while in the absence of a
bias −θ0ð0Þ ¼ a1 and I0ða1Þ ¼ 0.
The SCGF is obtained from the spectral problem

Ls½rsðxÞ� ¼ eθðsÞrsðxÞ [2,29], where rsðxÞ is the right
eigenfunction associated with the eigenvalue with largest
real part, which is eθðsÞ, of the so-called tilted Frobenius-
Perron operator [30]

Ls½αðxÞ� ¼
Z

I
e−sgðyÞαðyÞδ(x − fðyÞ)dy

¼
X

z∈ f−1ðxÞ

e−sgðzÞαðzÞ
jf0ðzÞj : ð1Þ

FIG. 1. Rare trajectories due to the repulsive effect of an
unstable fixed point are made typical. Fluctuations of the
time-averaged indicator function, A ¼ N−1 PN−1

n¼0 I½x��0.05�ðxnÞ,
of the tent map around the unstable fixed point x� ¼ 2=3.
(a) Cobweb plot for N ¼ 100 iterations. The support of the
indicator function is highlighted in light blue. (b) Trajectory
illustrated in (a). (c) Histogram, PðA ¼ aÞ, based on 105

trajectories, with mean hAi ¼ a1 ¼ 0.1. (d) Cobweb plot for N ¼
100 iterations of the Doob effective map with s0 ¼ −1, making
typical the rare fluctuation highlighted in (c). (e) Trajectory
illustrated in (d). (f) Histogram, Ps0ðA ¼ aÞ, based on 105

trajectories of the map in (d), with mean hAi ¼ a2 ≈ 0.78.
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This is analogous to the definition of a tilted operator for
Markov chains [7] and open quantum systems [19], and
has been recently studied for chaotic maps [29]. On the
other hand, the left eigenfunction of (1), lsðxÞ, satisfies
L†
s ½lsðxÞ� ¼ eθðsÞlsðxÞ, with L†

s being the tilted adjoint
operator, L†

s ½αðxÞ�¼e−sgðxÞα½fðxÞ�, see SM [30]. The
eigenfunctions are normalized such that

R
rsðxÞdx ¼R

lsðxÞrsðxÞdx ¼ 1. The tilted operator (1), however, does
not represent a proper physical evolution, since it does not
conserve probability, L†

s ½1ðxÞ� ≠ 1. Therefore it is not
obvious how to derive a map, associated with Ls, generating
the trajectories sustaining the fluctuation a, though such
trajectories have been computationally obtained through the
Lyapunov weighted dynamics [24]. Our contribution is to
show below how to obtain the effective chaotic map [as
displayed in Fig. 1(d)] generating those rare trajectories with
s ≠ 0 [see Fig. 1(e)], which follow the biased distribution
PsðaÞ for long times [Fig. 1(f)]. Such effective dynamics
obtained via the Doob transform is in general difficult to
construct since one needs to solve the full large-deviation
problem. Various numerical schemes, such as the cloning
algorithm and transition path sampling complemented with
trajectory umbrella sampling [34–36], variational tensor
networks [37–39], or machine learning techniques [40,41],
have been recently shown to converge to the effective
dynamics, but always in the context of stochastic systems.
Doob operator and Doob effective map.—By analogy

with the auxiliary Doob process of discrete-time stochastic
systems [42,43], we define the Doob operator for a given
s ¼ s0, based on the tilted operator (1), its left eigenfunc-
tion ls0ðxÞ, and the SCGF θðs0Þ, as

LD
s0 ½αðxÞ� ¼ e−θðs0Þls0ðxÞLs0f½ls0ðxÞ�−1αðxÞg: ð2Þ

The right eigenfunction associated with the largest eigen-
value of LD

s0 ½αðxÞ�, which is 1, is ρDs0ðxÞ ¼ ls0ðxÞrs0ðxÞ, and
corresponds to the stationary distribution of LD

s0 . Indeed, the
Doob operator (2) has the two crucial properties we sought:
(i) conservation of probability, i.e., ðLD

s0Þ†½1ðxÞ� ¼ 1, and
(ii) generation of the ensemble of trajectories giving rise to
the biased probability Ps0ðaÞ for long times, see SM [30]
for details. The atypical fluctuations of the natural dynam-
ics (s ¼ 0), associated with some s0 ≠ 0 in Eq. (1), thus
become typical in the Doob-transformed dynamics (2).
In summary, the Doob operator (2) has a stationary state

ρDs0ðxÞ that naturally yields the statistics for A correspond-
ing to rare fluctuations of the original dynamics, which are
exponentially suppressed in ρðxÞ, i.e., the invariant measure
of f. Yet we still need the Doob effective map, fDs0 ,
generating the atypical trajectories ynþ1 ¼ fDs0ðynÞ, which
requires finding a chaotic map with a prescribed invariant
measure [44], in this case ρDs0ðyÞ. While other maps may
have the same invariant measure, the Doob effective map
fDs0 is uniquely defined by the following procedure.

Assuming that ρðxÞ and ρDs0ðyÞ are strictly positive and
integrable (as in all the examples considered below), so
that their cumulative distributions FðxÞ ¼ R

x
−∞ ρðuÞdu and

FD
s0ðyÞ ¼

R
y
−∞ ρDs0ðuÞdu are continuous and increasing

(hence invertible) functions, the transformation that is
required is y ¼ γs0ðxÞ ¼ ðFD

s0Þ−1½FðxÞ�, as it is easy to
verify, see SM [30]. Applying this transformation, it is
straightforward to find the Doob effective map taking
into account that ynþ1 ¼ fDs0ðynÞ ¼ fDs0 ½γs0ðxnÞ� and that
ynþ1 ¼ γs0ðxnþ1Þ ¼ γs0 ½fðxnÞ�. From these equations we
obtain fDs0 ½γs0ðxnÞ� ¼ γs0 ½fðxnÞ�, so that the Doob effective
map, which is topologically conjugate to f, takes the form

fDs0 ¼ γs0◯ f◯ γ−1s0 : ð3Þ

The evolution is given by f after a change of coordinates,
y ¼ γs0ðxÞ, such that ynþ1 ¼ fDs0ðynÞ ¼ γs0ff½γ−1s0 ðynÞ�g.
The Doob effective map sustaining the rare event corre-
sponding to s0 ¼ −1 in the example based on the tent map
is illustrated in Fig. 1(d); see the SM for the numerical
method employed to obtain the eigenfunctions on which its
construction is based, where it is illustrated for the doubling
map, and compared with analytical and cloning-algorithm
results [30]. While a2 is practically impossible to sample
with the original dynamics f, by contrast, in the dynamics
given by the effective map fDs0 it is the average value. Thus
the fraction of time spent in the interval x� � 0.05 is much
higher, 78%, as illustrated in Fig. 1(e), and in the histogram
of Fig. 1(f).
Remarkably, while x� ¼ 2=3 is an unstable fixed point of

the tent map f, y� ¼ γs0ðx�Þ (which is close to, yet different
from, 2=3) is also an unstable fixed point of the Doob map
fDs0 . This is true in general and is imposed by the conju-
gacy: fDs0ðy�Þ¼ðγs0◯ f◯ γ−1s0 Þðy�Þ¼γs0 ½fðx�Þ�¼γs0ðx�Þ¼y�,
and ðfDs0Þ0ðy�Þ ¼ ðγs0◯ fÞ0ðx�Þðγ−1s0 Þ0ðy�Þ ¼ γ0s0ðx�Þf0ðx�Þ×
½γ0s0ðx�Þ�−1 ¼ f0ðx�Þ. Despite this, the peculiar shape of fDs0
makes the trajectory spend most of the time around x� [see
Fig. 1(d)]. One can similarly show that a fixed point of
fn ¼ f◯ f◯ � � � ◯ f maps into a fixed point of ðfDs0Þn with
the same stability. Those fixed points lie in periodic orbits
of f (with period n or integer factors thereof), which is the
topic we turn to next.
Counterbalancing the instabilities of periodic orbits.—

Unstable periodic orbits are very relevant, as many pro-
perties of chaotic systems are analyzed on such
orbits embedded within chaotic attractors (see, e.g.,
Refs. [23,45]). Figure 2 shows how to use our methodology
to counterbalance the repulsive effect of unstable periodic
orbits. We focus on the logistic map fðxÞ ¼ rxð1 − xÞ with
r ¼ 4 (sometimes called the Ulam map), see the black line
in Fig. 2(e). It has a period-two orbit comprising
x�� ¼ ð5� ffiffiffi

5
p Þ=8, which is unstable, as ðf2Þ0ðx��Þ ¼ −4.

Because of this instability, the average value of the
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indicator function A ¼ N−1PN−1
n¼0 ½I½x�−�0.025�ðxnÞ þ

I½x�þ�0.025�ðxnÞ� is only hAi ≈ 0.09. See Fig. 2(a), which
shows the SCGF θðsÞ, as well as its (minus) first derivative
hAis, as well as Figs. 2(e) and 2(f), displaying the cobweb
plot and a typical trajectory of the unbiased dynamics
respectively (s ¼ 0). As s is moved towards negative
(positive) values, the time average becomes larger
(smaller). We will focus on s0 ¼ −1, which yields
hAis0 ≈ 0.79, associated with a much longer time spent
in the vicinity of the period-two orbit, and s0 ¼ 1, corre-
sponding to hAis0 ≈ 0.02, for which the vicinity of the orbit
is seldom visited, as displayed by Figs. 2(d) and 2(h),
respectively. Those values of s0 correspond to large
deviations of a, well beyond the range of the Gaussian
approximation, as shown in Fig. 2(b).
The Doob map for s0 ¼ −1, see Fig. 2(c), is remarkably

different from the logistic map, represented in Fig. 2(e). In
the case of s0 ¼ 1 [Fig. 2(g)] the difference is more subtle,

yet sufficient for avoiding mapping values of xn into values
of xnþ1 in the support of the indicator function. The
trajectories shown in each case [Figs. 2(d), 2(f), and
2(h)] correspond to the cobweb plots in the panels
immediately above, and confirm all expectations.
A dynamical phase transition for the Lyapunov

exponent.—To conclude we focus on the timely topic of
dynamical phase transitions (DPTs) [7,37,46–51].
Specifically, we characterize the dynamical phases sus-
taining the fluctuations of the finite-time Lyapunov expo-
nent, A ¼ N−1PN−1

n¼0 ln jf0ðxnÞj, in the logistic map. For
long times, the average of this fluctuating observable,
which can be interpreted as a time-averaged information
loss [23], converges to the Lyapunov exponent. The latter is
hAi ¼ ln 2, as obtained from the topological conjugacy of
the logistic map and the tent map [23,45]. As the tilting
parameter s is varied, one finds that there are just two
possible values of the biased average hAis, namely, ln4 and
ln2 (including obviously s ¼ 0). Indeed the SCGF, which
for this observable is closely related to the so-called topo-
logical pressure (see, e.g., [23]), is θðsÞ ¼ −2ðsþ 1Þ ln 2
for s ≤ −2 and θðsÞ ¼ −s ln 2 for s ≥ −2, as discussed,
with different conventions, in Refs. [52,53] and others
therein [54]. Both the SCGF θðsÞ and the average hAis ¼
−θ0ðsÞ are displayed in Fig. 3. In this case the rate function
is linear, IðaÞ ¼ 2ða − ln 2Þ, for ln 2 ≤ a ≤ ln 4, and infin-
ite anywhere else.
We next characterize the two dynamical phases, as well

as the critical point (s ¼ s0 ¼ −2). For s < −2, the Doob
effective map, presented on the left of the lower inset to

FIG. 2. Rare trajectories due to the repulsive effect of unstable
period-two orbits are made typical. Fluctuations of the time-
averaged indicator function, A ¼ N−1 PN−1

n¼0 ½I½x�−�0.025�ðxnÞþ
I½x�þ�0.025�ðxnÞ�, of the logistic map around the period-two orbit

formed by x�� ¼ ð5� ffiffiffi
5

p Þ=8. (a) SCGF θðsÞ and biased average
hAis ¼ −θ0ðsÞ. The three points highlighted correspond to s ¼
−1 (square), s ¼ 0 (circle), s ¼ 1 (triangle). (b) Rate function
IðaÞ, and Gaussian fluctuations around its average hAi. (c) Cob-
web plot of the Doob effective map for s0 ¼ −1. The support of
the indicator function is highlighted in light blue. (d) Trajectory
corresponding to the cobweb in (c). (e),(f) Cobweb plot and
trajectory of the (unbiased) logistic map (s0 ¼ 0). (g),(h) Cobweb
plot and trajectory of the Doob effective map for s0 ¼ 1.

FIG. 3. Characterization of phases in a DPT for the Lyapunov
exponent of the logistic map. Main panel: SCGF θðsÞ and biased
average hAis ¼ −θ0ðsÞ. The three points highlighted correspond
to s ¼ −3 (square), s ¼ −2 (star), s ¼ 0 (circle). The latter
corresponds to the logistic map, shown in Fig. 2(e) with a typical
trajectory displayed in Fig. 2(f). Lower inset: Doob effective map
and representative trajectory for s0 ¼ −3. Upper inset: same as
lower inset but at the critical point s0 ¼ −2, exhibiting coexist-
ence between both dynamical phases. In both insets the original
(logistic) map is also shown (see dashed lines).
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Fig. 3 for s0 ¼ −3, generates trajectories that localize in the
vicinity of the point x ¼ 0, as displayed on the right of the
same inset. There small intervals expand with a rate ln4
(instead of the common expansion rate ln2 to be found
elsewhere in phase space [23,52]), leading to hAis ¼ ln 4.
On the other side of the DPT, for s > −2, hAis ¼ ln 2, as in
the unbiased dynamics (s ¼ 0), whose trajectories are
displayed in Fig. 2(f), where the region around x ≈ 0 is
hardly ever visited. Finally, the Doob effective map at the
critical point s0 ¼ −2 is shown in the upper inset to Fig. 3.
This map generates trajectories as the one presented on the
right of the inset, which exhibits a remarkable intermittency
between the behavior for s0 ¼ −3 and for s0 ¼ 0, illustrat-
ing the coexistence between dynamical phases character-
istic of first-order DPTs [7,17,46,49].
Concluding remarks.—We have developed a theoretical

framework to find the effective dynamics realizing atypical
trajectories in chaotic maps. Apart from its obvious interest
for dynamical control purposes, it allows for the charac-
terization of phases involved in DPTs occurring far away
from the unbiased dynamics. While our approach has been
developed for 1D systems, the formalism can be extended
to cover higher-dimension maps, and perhaps also con-
tinuous-time flows. The adaptation of this framework to
fluctuations at finite times by means of the finite-time Doob
transform may also be feasible with currently available
techniques [12,20,38,55].
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