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Central spin systems, in which a central spin is singled out and interacts nonlocally with several bath
spins, are paradigmatic models for nitrogen-vacancy centers and quantum dots. They show complex
emergent dynamics and stationary phenomena which, despite the collective nature of their interaction, are
still largely not understood. Here, we derive exact results on the emergent behavior of open quantum central
spin systems. The latter crucially depends on the scaling of the interaction strength with the bath size. For
scalings with the inverse square root of the bath size (typical of one-to-many interactions), the system
behaves, in the thermodynamic limit, as an open quantum Jaynes-Cummings model, whose bosonic mode
encodes the quantum fluctuations of the bath spins. In this case, non-Gaussian correlations are dynamically
generated and persist at stationarity. For scalings with the inverse bath size, the emergent dynamics is
instead of mean-field type. Our Letter provides a fundamental understanding of the different dynamical
regimes of central spin systems and a simple theory for efficiently exploring their nonequilibrium behavior.
Our findings may become relevant for developing fully quantum descriptions of many-body solid-state

devices and their applications.
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Collective quantum systems, such as spin ensembles
with infinite-range interaction, are ubiquitous in physics
and naturally emerge, e.g., in cold-atom experiments [ 1-7].
The broad set of tools available for these systems [8—24]
permits for an in-depth characterization of their emergent
behavior [8-10,17,25-34], which is, in general, exactly
described by a mean-field theory [18-24,35].

A paradigmatic class of many-body systems featuring
collective interaction is that of (open quantum) central spin
systems [36—46]. The latter consist of a central spin which
couples nonlocally to N bath spins, with interaction
strength ¢ [cf. Figs. 1(a)-1(b)]. These systems provide
quantum models for nitrogen-vacancy centers and quantum
dots, and describe their applications as quantum memories
or nanoscale quantum sensors [47-55]. Despite such a
broad relevance, an emergent theory for central spin
systems in the thermodynamic limit is still missing
[50,56-59], especially within the framework of open
quantum systems [41,42,60]. In this regard, a key compli-
cation arises from the fact that, even though they feature a
collective interaction [cf. Fig. 1(a)], central spin systems are
not always captured by a mean-field theory [60]. This
observation poses the challenge of understanding why
mean-field theory can fail to describe these systems in
certain parameter regimes and whether there still exists an
effective theory for these cases. Answering these questions
can pave the way to a fully quantum description of many-
body solid-state devices [50,56-59], thus enabling the
analysis and the exploration of protocols for controlling
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quantum bath-spin many-body dynamics or for engineering
correlated quantum states [44,61-70].

In this Letter, we make progress in this direction by
analytically deriving the emergent dynamical theory for
open quantum central spin systems [cf. Figs. 1(a)-1(b)].
For g~ 1/v/N, we show that the central spin system
behaves, in the thermodynamic limit, as a one-spin one-
boson system, related to the Jaynes-Cummings model [71],
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FIG. 1. Sketch of the system. (a) A central spin, described by
Pauli matrices z,, interacts with N bath spins, denoted by the

matrices 0,(1’(). (b) Spins are subject to decay and pump of
excitations, with rates y4 | (I'; | ) for the central spin (bath spins).
The central spin interacts with the bath spins, with coupling
strength g, via exchange of excitations. (c) For g ~ 1/v/N and in
the limit N — oo, the central spin system behaves as an open
quantum Jaynes-Cummings model. The bosonic mode accounts
for the quantum fluctuations of the bath spins, which develop a
strong non-Gaussian character.
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which encodes the coupling of the central spin with the
quantum fluctuations [23,72-74] of the bath [see illustra-
tion in Fig. 1(c)]. In this scenario, the system does not obey
a mean-field theory, but rather a quantum fluctuating-field
one, and develops strong long-lived non-Gaussian corre-
lations which persist in the thermodynamic limit. Central
spin systems are thus a promising resource for engineering
complex quantum fluctuations and non-Gaussian correla-
tions in many-body systems—which is a matter of current
interest [75]. We further consider an interaction strength
scaling as g ~ 1/N. In this case, the central spin couples to
the average behavior of the bath spins and the system is
described by a mean-field theory.

Our Letter delivers new insights into the dynamics of
open quantum central spin systems and resolves a discrep-
ancy between recent numerical results and mean-field
prediction for these systems [60]. It further provides a
clear-cut example of a quantum fluctuating-field theory in
open quantum systems, whose fundamental properties may
be relevant for developing an emergent theory for solid-
state devices, able to account for many-body spin baths in
the quantum regime [50,56-59].

Central spin system.—We focus on the system depicted
in Fig. 1(a), consisting of N + 1 spin-1/2 particles, with
1) and || ). The central spin is described by the
Pauli matrices 7z, while ch)’ k=1,2,...N are those of the
bath spins. The system Hamiltonian is (see below for
extensions)

H=H, + Hj,, with Hj = g(T+S— + T—S+)' (1)

Here, H, = ), w,t, is the Hamiltonian of the central spin
only, Sy =>N, ai‘) and ri, o are ladder operators, e.g.,

=1]})(1] and 6, = 6l. The interaction Hamiltonian
Hll1t describes a collectlve excitation exchange, with
coupling strength g, between the bath spins and the central
one [cf. Figs. 1(a)-1(b)]. The system is also subject to
irreversible processes, shown in Fig. 1(b), so that the
dynamics of any system operator X is implemented by
the equation X, = L[X,] := i[H,X,] + D,[X,] + Dpan|X.]
[76-78], where

Di[X] =y We [X] + 74 Ve [X],

N
Dy | X kz O X+ TWwlX]).  (2)
The rates y4 | (I'y ;) are associated with irreversible pump
and decay of excitations for the central spin (bath spins)
and W,[X] = v Xv— (V'vX + Xv'v) /2.

A particular instance of the system above was inves-
tigated in Ref. [60]. It was numerically shown that a mean-
field approach, obtained by neglecting correlations among
spins, does not capture the behavior of the system in the
thermodynamic limit, for g ~ 1/+/N. This came as quite a

surprise since it is, at least at first sight, in stark contrast
with what happens to structurally similar spin-boson
models [15,24,32,60,79,80]. In what follows, we rigor-
ously explain the dynamical behavior of central spin
systems through exact analytical results.

Since we will work in the limit N — oo, it is useful to
make a few considerations on the generator L. Its dis-
sipative terms describe irreversible processes occurring
independently for each spin and are thus well defined
for any N. The Hamiltonian H;,; in Eq. (1) shows instead a
peculiar behavior. From the viewpoint of the bath spins, it
features the expected extensive character, with norm
proportional to gN. However, this extensivity is problem-
atic for the central spin. To see this, let us compute

) = 74(0-)), (3)

where Q is the partial expectation over the bath spins,
such that Q(z_S,) = 7_(S, ), which we assume to be un-

correlated, Q(ou'cy”) = Q(ot)Q(sy"), V k#h, and

B

permutation invariant, Q(a((lk)) = (64), VY k. In the thermo-
dynamic limit, Eq. (3), which provides a term appearing in
the time derivative of 7, at time ¢ = 0, diverges unless

(64+) = 0. Even using this assumption, the term

Q([Hintv Tz]) = 2gN<T— <6+

Q([Hy. [Hin 7]]) = 49N (z.(010-) —1.7(07)).  (4)
shows that the Heisenberg equations for the central spin can
diverge with N. To make the above dynamics well behaved,
one has to appropriately rescale g. We first consider g ~
1/+/N and show that this choice gives rise to an effective
one-spin one-boson dynamics. Later, we turn to the case
g~ 1/N which, as we demonstrate, is instead exactly
described by a mean-field theory.

Local state of the bath spins.—Rescaling the coupling
constant also affects the dynamics of the bath spins.
Considering a generic local bath operator A (i.e., an
operator solely acting on a finite number of bath spins
[81]), we indeed have that ||[H,, A]|| ~ ¢ vanishes when-
ever g decays with N. This implies that the Hamiltonian
H;, is irrelevant for the dynamics of local bath operators,
which thus solely evolve according to Dy, in the thermo-
dynamic limit. This fact is summarized in the following
Lemma, whose proof is given in Ref. [81].

Lemma 1.—For an interaction strength g = g,/N*, with
z> 0 and gy an N-independent constant, we have

lim [[e"[A] — e/Po[A]]| = 0,

N—oo

for any local bath-spin operator A.

The time evolution of local operators of the bath spins,
e.g., the operators O'ak), and of the so-called average
operators m?} ZN 10'a /N as well (see Ref. [81]), is
thus not affected by the presence of the central spin.
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Furthermore, the dynamics generated by D,,q, drives the
bath spins towards the permutation-invariant uncorrelated

state Qgg, defined by the expectation values Qgg (agk)) =

I_/T,, with [y =T, + T, and Qgs(c') = 0. Note that
the latter relation, combined with the rescaling g ~ 1/v/N,
gives a well-defined thermodynamic limit for Egs. (3)-(4).
It is thus reasonable to assume gg to be the “reference”
(initial) state for the bath spins. As we shall see below, the
bath spins nevertheless experience some dynamics. Their
quantum fluctuations, described by nonlocal unbounded
operators, are indeed affected by the coupling with the
central spin and thus can evolve in time [21-23,87,88].
Without loss of generality, we focus on the case I'y <T")

and define £ := —Qgg (o)) > 0.

Bath-spin  fluctuations.—For g = go/+/N, the central
spin couples to bath operators of the form S, /v/N, as
clear from Eq. (1). These nonlocal unbounded operators are
known as quantum fluctuation operators and behave, in the
thermodynamic limit, as bosonic operators [72—74,85,89].
This can be understood by considering their commutator
[S_,S.]/N = —mY, which is proportional to an average
operator. For product states like €gg, average operators
converge to their expectation value [82-84,90], essenti-
ally due to a law of large numbers. As such, we have
[S_,S,]/N — &, which suggests the definition of the
rescaled quantum fluctuations

s,
VeN'

The latter are such that [ay, a}v] — 1, and thus behave as
annihilation and creation operators. The quantum state of

(5)

the limiting fluctuation operators a = limy_ . ay and a’ =
limj\,_woajV (where convergence is meant in a quantum
central limit sense [72-74,81]) emerges from the state Qgg.
It is a bosonic thermal state py identified by the occupation
Tr(ppa‘a) = limy_ o Qss(ayay) =Ty /(el'y), as proved
in the following Proposition. .
Proposition 1.—The state Qgg and the operators ay, ay
give rise, in the limit N — oo, to a bosonic algebra, with
operators a, a' and state Q4(-) = Tr(py), where

_ ePwa'a d _ Iy
Pp=1 oo W4 fo= BT etT,

Proof—Following, e.g., Refs. [72,86], in order to show
that the operators ay, ay behave, in the limit N — oo, as
bosonic operators equipped with the state pg, we need to
show that (in the spirit of a central limit theorem)

lim Qgg (") = ¢ 1s/28) — Tr(pyeta=s'a’),

N—-oo

and analogous relations for products of the above exponen-
tials. These limits define an equivalence relation between
bath-spin fluctuations and a Gaussian bosonic system. The
explicit calculation is reported in Ref. [81]. [

Mapping bath-spin fluctuations onto bosonic operators
shows that the central spin system becomes, in the thermo-
dynamic limit, a one-spin one-boson model [cf. Fig. 1(c)].
The task is now to derive its dynamics.

Emergent non-Gaussian dynamics.—The terms in the
generator concerning the central spin only, i.e., H, and D,,
are not affected by the limit N — co. However, to identify
the emergent dynamics we also have to control the action of
the generator D, and of the interaction Hamiltonian H;,,
on the relevant operators. The aim is then to interpret this
action as that of a dynamical generator for the one-spin one-
boson model formed by the central spin and the bath-spin
quantum fluctuations.

For the interaction Hamiltonian, we observe that [recall-
ing Eq. (5) and using that g = go/+/N]

N—co

i[Hin. ay] = igov/er_lay. ay]— —igov/er_.  (6)

which follows from the bosonic character of quantum
fluctuations. Since central spin operators are not affected
by the limit, we conclude that the emergent interaction is
described by the Jaynes-Cummings Hamiltonian [71]

Hiy = goVe(r_a’ +7.a). (7)

The dissipator Dy, is not of collective type. Still, we
can understand its limiting behavior by analyzing its action
on the operators ay, aj. We observe that Dy [ay] =
—I',ay/2, and that

Iy

I't Moo
PN iy
&

Dyanlayay] = —T.ayay + . ~T,a'a+
These relations suggest that the dissipative processes are
implemented on quantum fluctuations by the map

DIX] = kW, [X] + &y W [X]. (8)

The above is a quadratic map and encodes loss and pump
of bosonic excitations, with rates k| =T, +Ty/e and
Ky =Ty /e [cf. Fig. 1(c)]. Our considerations, gathered in
the following Theorem, allow us to establish that the central
spin system becomes an emergent spin-boson system
associated with the dynamical generator

L[X] = i[H, + Hy. X] + D.[X] + D[X]. 9)

In essence, this generator describes Jaynes-Cummings
physics [71] in the presence of dissipation and of a possible
Hamiltonian “driving,” H,, on the central spin.
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FIG. 2. Emergent dynamics and non-Gaussian fluctuations. System with y4 = 0.8y, v, = 0.1y, Iy = 0.2y, ') =y, w, = 2w, =7,
and y being a reference rate. Initially, the central spin is in state |1) and the bath spins are described by Qgs. (a) Dynamics of the
magnetization (z.). The curves shown are for N = 6, 10, 80. The dashed line is the model in Eq. (9). Here, g/y = 4. The inset shows
Alz.] = max,, c(04[(7.) — (7.)m|, where (-)y, denotes the expectation for the model in Eq. (9). (b) Same as (a) for the “quadrature”
gy = (ay + aly)/v/2. The inset shows Alg] := max,, e (04(qn) — (@), With ¢ = (a + a')/+/2. (c) Fourth moment of the centered
quadrature Qy = gy — (gy), compared with the prediction (dashed line). The inset displays A[Q*] := max,, ¢ [o.4)|(QX) — (Q*) |, with
0 = q — (q). (d) Stationary value of (Q*),, compared with the Gaussian estimate 3(Q?)3.. The shaded region highlights the regime in
which (Q%),, is signaling a strongly non-Gaussian quantum state.

Theorem 1—For g= gy/\/N, the action of £ on
monomials of bath-spin fluctuations and central spin
operators gives rise, under any expectation taken with
Qqg, to the map L on the emergent one-spin one-boson
system.

Proof—The idea is to make the above argument valid
for generic monomials of the form Py = z,al akml".
Because of Proposition 1, Py converges to P =
t,a'’ a*(—€)" in a “weak” sense, i.e., whenever considering
expectation values constructed with the state Qgg and other
monomials (see Ref. [81]). This convergence provides the
starting point to investigate the action of L. It can indeed be
shown that L[Py] produces a linear combination of
monomials of the same type of Py, plus corrections of
order O(1/N) under the considered expectation. Pro-
position 1 thus guarantees that limy_,., £[Py] converges
to a linear combination of monomials of the same form of
P. By direct calculation, we can show that such linear
combination is equal to that produced by L[P] [81]. m

The theorem directly implies that the dynamics of the
emergent one-spin one-boson model, describing the central
spin system in the thermodynamic limit, is governed by the
generator in Eq. (9), under physical regularity conditions on
the evolution (see details in Ref. [81]).

To concretely benchmark our derivation, we perform
numerical simulations of the model in Eq. (9). We consider
the dynamics of the central spin system, as described by
Egs. (1) and (2), and analyze convergence of the numerical
data for finite systems [12,13,15,16] to our prediction, upon
increasing the size of the bath. The convergence behavior is
shown in Figs. 2(a), 2(b), and 2(c) for different observables.
In the insets of Figs. 2(a), 2(b), and 2(c), we provide the
maximal absolute difference between finite-N results and
our prediction for the thermodynamic limit. This error
measure decays as ~1/N, as anticipated in the proof of
Theorem 1, thus confirming the validity of our theory.

As shown in Fig. 2(d), quite remarkably, the central spin
system features, in the thermodynamic limit, non-Gaussian
correlations among the bath spins which persist at
stationarity.

Mean-field regime.—We now turn to the case g = g,/N.
Here, the norms of H, and H;, are of the same order and
the central spin couples to the (bounded) bath-spin average
operators m¥ [cf. Eq. (1)]. Thus, it is not necessary to
require (6.) = 0 for a well-defined thermodynamic limit
[cf. Eq. (3)] and we can therefore consider more involved
bath-spin dynamics. For concreteness, we still focus on the
dissipator Dy, and introduce a noninteracting Hamiltonian

Huan =Y o had vy o® . Other collective dynamics [23,35]
would give analogous results.

The bath-spin dynamics is not affected by the central
spin [cf. Lemma 1] and the evolved average operators
e'*[m}] converge (weakly) to the time-dependent multiples
of the identity m,(¢), obeying a mean-field theory. The
central spin instead feels the presence of the bath spins via a
coupling to their average operators. The latter thus provide
time-dependent (mean) fields “modulating” the central spin
Hamiltonian (see also Ref. [91]). This is the content of the
next Theorem proved in Ref. [81].

Theorem 2.—Consider g = go/N, an initial bath-spin
permutation-invariant uncorrelated state  and the gener-
ator £, with H — H + Hy,;,. Under any possible expect-
ation (that is, in the weak operator topology [82—84]), the
dynamics of central spin operators is generated, for
N — o0, by D, and the time-dependent Hamiltonian

HI = H, + golm_(1)r, +m.(1)z_).

Here, m(t) = [m,(t) £im,(t)]/2 and m,(t) are the
(scalar) limits of the evolved bath-spin average operators.

The exactness of a mean-field theory in many-body
systems is thus not merely related to the structure of the
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interaction. It relies on substituting certain time-evolved
operators, in a finite set, with their expectation value. For
this, it is sufficient that (i) the substitution is valid for the
initial state, in the thermodynamic limit [90]; (ii) the action
of the generator on these operators gives a “regular”
function of them, plus at most terms vanishing with N
[23,24,35]. If this happens, the involved operators converge
to scalars at all times [24,35,81]. Despite the collective
interaction, for g ~ 1/+/N, the central spin couples to the
quantum fluctuations of the bath spins, which do not even
converge to scalar quantities in the initial state. In this case,
mean-field theory cannot be exact.

Inhomogeneous coupling and extensions.—Our appro-
ach remains valid for inhomogeneous couplings [50,53,92].
To show this, let us consider the interaction H;, =
gty ZQ’ZI cro® + H.c. and set, without loss of generality,
SN |ex’/N = 1, in the thermodynamic limit. By defin-
ing the quantum fluctuation ay = (1/veN) ¥, c;ol®),
we have that [ay, aj;,] — 1, we can prove Proposition 1 and
the results in Egs. (6)—(9), leading to the emergent one-spin
one-boson theory for g ~ 1/4/N. By defining the average
bath-spin operators m = (1/N) >N, o and follow-
ing Theorem 2, we can show the validity of mean-field
theory for g ~ 1/N.

Our derivation holds for generic couplings of the form
Ty ZQ’:] ag;)v and interactions among bath spins (see
Ref. [81]). It also holds for arbitrary spin particles [23]
and for non-Markovian dynamics with time-dependent
generators. In the latter case, time-dependent bath-spin
rates would lead to a time-dependent state on local bath-
spin operators, and thus to a time-dependent e. Note that
our results could not be obtained via Holstein-Primakoff
approaches [93], due to the presence of local dissipation
and/or inhomogeneous coupling [32]. Even when Holstein-
Primakoff transformations can be applied (e.g., unitary
dynamics [94,95]), our derivation inherently accounts
for the state-dependent emergent commutation relation
between the operators S,/ V/N [23,72-74,85], encoded
in &, which may be overlooked by other approaches.

Discussion.—Central spin systems can be realized with
nitrogen-vacancy centers or quantum dots [41,42,52,53,92].
In these cases, the coupling between the central spin and
each bath spin depends on their distance and on the angle
between the two spins and the applied magnetic field
[53,92]. This allows one to control the “microscopic”
couplings, and even to realize the 1/v/N or the 1/N
scalings, by engineering suitable structures [e.g., (quasi)
one-dimensional ones] and choosing appropriate field
directions. In the case of fixed couplings, desired regimes
may instead be achieved by scaling-up with N other
parameters, such as the driving fields [42,60]. Coupling
strengths g « 1/N, related to the mean-field limit, are
accurate in regimes with delocalized central-spin wave
function [50]. Still, due to the finiteness of realistic

systems, bath-spin fluctuations become relevant, on long
time-scales, also in these cases [39,50]. Our approach
allows us to treat them in the quantum regime. Further-
more, central spin systems can be realized with Rydberg
atoms [96-98], guaranteeing highly controllable couplings
[97,98]. Our findings thus also provide a simple way to
benchmark these quantum-simulation platforms.

We now comment on related results. References [42,60]
consider Hamiltonian H, and/or dissipation D, with the
same extensivity of H;,. This case is similar to that of
Theorem 2 and indeed shows mean-field behavior. Another
related result is Lemma 1.5 of Ref. [22], which focuses on
closed systems with Hamiltonian given by H, and, e.g.,

Hin = (90/ VN )7,S,. There, the emergent bosonic mode
reduces to a classical random variable.
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