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We provide a model capable of accounting for the multiferroicity in certain materials. The model’s base
is on free electrons and spin moments coupled within nonrelativistic quantum mechanics. The synergistic
interplay between the magnetic and electric degrees of freedom that turns into the multiferroic phenomena
occurs at a profound quantum mechanical level, conjured by Berry’s phases and the quantum theory of
polarization. Our results highlight the geometrical nature of the multiferroic order parameter that naturally
leads to magnetoelectric domain walls, with promising technological potential.
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Introduction.—Magnetoelectric multiferroics are materi-
als that exhibit magnetic and electric order parameters [1],
and their properties have attracted significant attention due
to their potential applications in low-dimensional electronic
and spintronic devices [2–4]. This potential has fueled
a variety of research endeavors, where, for example,
a room-temperature magnetoelectric memory was imple-
mented [5].
Multiferroic materials are customarily classified [6] into

type-I and type-II multiferroic materials. Type-I multi-
ferroic materials show ferroelectric and magnetic ordering
that arise independently [7]. An important example of this
type of multiferroics corresponds to BiFeO3. This material
offers strong polarization at high temperatures (around
1100 K) and antiferromagnetic ordering at lower temper-
atures (around 640 K) [8]. Typically, this material achieves
a relatively large polarization of 100 μC=cm2 [9]. In type II
multiferroic materials, the magnetic ordering of the
material breaks the inversion symmetry and induces a
dipole moment [2]. This is generally achieved through a
mechanism that relies on spin-orbit coupling (SOC) as
described in [10], although there are alternatives such as the
charge order mechanism [11,12] among others [13,14]. For
these reasons, such behavior is generally associated
with other consequences of the SOC, such as the
Dzyalonshinskii-Moriya interaction. In this type of multi-
ferroics, the electrical and magnetic ordering are coupled.
Therefore, the magnetic and electric domains and domain
walls coexist, and nontrivial magnetoelectric coupling is
observed [15]. This type of multiferroics has also been
observed in systems of multiferroic heterostructures and 2D
van der Waals multiferroic networks [2,16–19].
The quest for generalized magnetoelectric effects is

generally guided by the symmetry principles [20].
Examples of this can be found in the literature on the
magnetoelectric effect in topological insulators [21] and the

discovery of hidden magnetoelectric multipolar order in
Cr2O3 and α-Fe2O3 [22]. Following such guidelines, we
present a simplified, nonrelativistic model of a topological
multiferroic system. Our chosen model is simple, based on
Kronig-Penney’s model [23], a well-established framework
for studying electronic bands in one dimension. We
complement the model by decorating it with magnetic
degrees of freedom as localized magnetic moments and
considering the coupling between its physical variables
[24]. Decoration is set up to explicitly break space inversion
P, time reversal T , symmetries, and joint symmetry PT .
We investigate the topological phase diagram following the
model [25]. We show that the multiferroic behavior of our
model arises from the synergy between the magnetic and
electric degrees of freedom in the system. Such cooperative
interplay takes place deep down at a quantum-mechanical
level. It originates from the wavelike behavior of the
electron and its Berry phases in what is known as the
modern theory of polarization [26]. The strength of
the coupling between these two parameters plays a crucial
role in determining the properties of the system. We
emphasize that no appeal at spin-orbit coupling is drawn
at any point in our arguments. Our results provide insight
into the behavior of multiferroics, along with hints at the
geometrical meaning of the multiferroic order parameter.
Our results may help guide the design of new materials with
enhanced multiferroic properties. Of particular interest are
the two-dimensional van der Waals systems that have been
shown to display ferroelectricity [27].
A spin-dependent Kronig-Penney framework.—The

essence of the model we studied is as follows. We
considered a one-dimensional electronic periodic system
described as a nonrelativistic continuum model with period
a. Within each unit cell, we have two localized classical
spins S1 and S2, whose directions we leave as free
parameters. Within each unit cell, the local moments are
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located at positions l1 and l2, whose distance is
jl1 − l2j ¼ aζ, see Fig. 1(a). The dimensionless parameter
0 < ζ < 1 will be essential in the following discussions.
The spin-dependent Hamiltonian reads as follows:

H ¼ p2

2m
1σσ0 þ Vσσ0 ðxÞ; ð1Þ

where,

Vσσ0 ðxÞ ¼
X
n;i

δðx − na − liÞðVi1σσ0 þ ΔiSi · τσσ0 Þ: ð2Þ

Here 1 stands for the unit matrix, τ represents the vector of
Pauli’s matrices, Δi corresponds to an s-d exchange
coupling strength, and δð·Þ stands for Dirac’s delta signal-
ing the moments’ positions, see Fig. 1(b). Regarding
electronic filling, although most of our conclusions apply
qualitatively to arbitrary occupations, we will consider two
cases: one electron per δð·Þ and two electrons per δð·Þ.
Referring to the effective Hamiltonian discussed later, we
call these cases filling one-half and filling one, respectively.
A similar model was used in [28] to reveal topological

states in a spinful Su-Schrieffer-Heeger (SSH) nanowire
and the spin orbit and Zeeman interactions within such
structures. While this model is meant to display symbolic
features arising from its symmetries (or lack thereof), we
mention in passing that it can provide a faithful account of a
family of dimerized one-dimensional antiferromagnets of
polymeric nature [29]. Additionally, effective metamateri-
als [30] can be built in such a way that the glances of this
model are cast in their emergent behavior. It is possible to
create optical analogs [31,32] whose degrees of freedom
follow the dynamics associated with our case study. Finally,
we mention the exciting possibility of applying this model

to low-dimensional van der Waals magnetic systems such
as one-dimensional MoI3 [33].
We look for solutions in the form of Bloch functions

ΨkσðxÞ ¼ ukσðxÞeikx, where ukσ is a periodic function
sharing the lattice period and k is a momentum label lying
within the first Brillouin zone (BZ).
We numerically diagonalize Eq. (1) and find, in this way,

explicit values for eigenvalues εmk and eigenvectors jumki,
where m is a band index and k a momentum label. The
Berry phases and spin Berry phases are calculated simul-
taneously using the following relation:

Pμ ¼ −
Xocc
m

I
BZ

dk
ð2πÞ Imhumkjσμ∂kjumki; ð3Þ

where σμ ¼ ðσ0; σiÞ ¼ ð1; τiÞ. In Eq. (3), occ restricts
the sum to the occupied states. We will also consider
the spin-polarized Berry’s phases: P↑ ¼ ðP0 þ PzÞ=2 and

P↓ ¼ ðP0 − PzÞ=2. P0 and P⃗ are related directly to the
electric dipolar density by Pe ¼ eaP0,[26] and the spin-
dipolar moment density by P⃗s ¼ ðℏ=2ÞaP⃗ [34].
Antiparallel case: A spin-dependent Rice-Mele model.—

We address the case S1 ¼ −S2. This choice explicitly
breaks the inversion symmetry (around the unit cell
midpoint). We choose S1 as the quantization axis for the
electronic spins. We refer to it as the z axis. Diagonal in
spin space, we see that model in Eq. (1) reduces to two
independent copies of spin complementary replicas. On the
first replica, associated with spin-up, one local moment
provides a potential well while the other provides a
potential barrier. The role of the local moments is reversed
in the case of spin-down. We take separately two combi-
nations of Vi.
Case 1: Symmetric potentials: V1 ¼ V2 ¼ 0. We argue

on a permanent spin-dipolar moment and piezospintronic
effect.
The system explicitly breaks inversion symmetry, P, and

time-reversal symmetry, T . However, the system preserves
the combined symmetry PT . We can realize that each spin
species in the model is described by an effective Rice-Mele
(RM) model [35]. The model exhibits insulating behavior
and distinct topological phases. Its spectrum was developed
to study the electronic properties of linear polymers [29].
The RM model consists of two-site unit cells with alter-
nating on-site energies E0 þ δV and E0 − δV and an intra-
unit cell hopping matrix element tþ δt. Unit cells are
coupled by hopping between cells of the nearest neighbor
t − δt. The case in this section corresponds to E0 ∼ 0,
δV ∝ Δ, and δtðζÞ. Moreover, the most interesting case of
this limit is achieved when one is filled.
The emergence of the spin-dependent RM model as an

effective low-energy form from the original model is not an
accident, but merely a consequence of the broken and
preserved symmetries. For this reason, it allows us to draw

FIG. 1. (a) A cartoon of the model under study. The blue
balloon highlights a unit cell of the system. (b) A close-up of a
unit cell displays the spin-splitting field’s effect on each spin
species. The effect of δð·Þ has been smeared by a factor ϵ for
illustration purposes. The illustration is made for the case of
V1 ¼ V2 ¼ 0 and S1 ¼ −S2. The red (blue) lines depict the
up-spins (down-spins). (c) Same as in (b), but we include a
staggered potential V1 ¼ −V2 ¼ V. The horizontal lines depict
these. The image shows that a scalar staggered potential induces a
magnetic response.
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several general conclusions. The original spinless RM
model is a paradigm of modern polarization theory that
attaches a definite value of the electric charge-dipolar
moment, P↑=↓, as a function of ζ, and this value, as
calculated through the Eq. (3), are odd functions of
δVð∝ ΔÞ. The system consists of two replicas with opposite
staggered potentials that act on each spin species. This
means that Pe ¼ eaðP↑ þ P↓Þ vanishes identically and
that the system does not have a net charge-dipolar moment.
However, the spin-dipolar moment density Ps

z ¼
ðℏ=2ÞaðP↑ − P↓Þ, however, does not cancel. The system
exhibits a permanent spin-dipolar moment. This permanent
spin-dipolar moment density has doubly degenerate values,
presenting two equivalent states connected by time-reversal
symmetry.
One might read and control these states by injecting pure

spin currents into the system. A desirable goal would be a
completely spintronic device, a circuit controlled by spin
current that is sensitive to permanent spin-dipolar moments
mediated hysteresis loops, reflecting the stability of spin-
dipolar moment domains. Spin-carrying domain walls will
likely dominate the reversal of such spin-dipolar domains.
Such wall dynamics will have a rich phenomenology and
be controllable with external fields. Additionally, the above
leads to other measurable effects, such as the piezospin-
tronic effect predicted in [34,36], which is the theoretical
prediction that certain materials can produce pure spin
currents when subjected to mechanical strain. This mecha-
nism to generate pure spin currents could become important
in organic spin valves, as shown in [37].
Case 2: Staggered potentials: V1 ¼ −V2 ¼ V. Here,

we present a minimal model of a nonrelativistic multi-
ferroic system. We add a spin-independent scalar staggered
potential that alternates between the sites in the system. In
this case, the system still explicitly breaks the inversion
symmetry P and the time-reversal symmetry T . However,
the system no longer maintains the combined sym-
metry PT .
Even though the added potential is spin independent, a

spin imbalance is induced in the system since the potential
favors the electrons in the lower-energy region with a
preferred spin direction. See Fig. 1(c). Therefore, the
system develops an overall ferromagnetic moment.
However, the �V correction to the local energy at the
sites left unbalanced the Rice-Mele contribution to the
electric charge-dipolar moment from each spin species.
One is a function of (δV þ V) and the other of −ðδV − VÞ.
Consequently, there is a nonvanishing net electric charge-
dipolar moment density Pe ¼ eaðP↑ þ P↓Þ ≠ 0. See
Figs. 2(d) and 2(e).
The model analyzed so far also displays a ferromagnetic

moment and a net electric charge-dipolar moment. Hence,
it constitutes a simple, nonrelativistic instance of a multi-
ferroic system. These considerations are confirmed by the
detailed calculations presented in Fig. 2.

We point out an interesting prediction related to material
engineering and design. It is possible to achieve a system
with a well-defined gap between the lowest (majority spin)
band and the second (minority spin) band. Under the
conditions of half-filling, such a system will display
quantized magnetization and maximum charge-polariza-
tion densities. Large magnetoelectric effects will follow this
topologically quantized form of multiferroicity.
As its analogous Hamiltonian (RM), the multiferroic

system displays an interesting pattern of charge- and spin-
carrying domain walls [38], topological defects that sep-
arate lattice regions with different topological properties.
For the case studied here, this corresponds to different
patterns of dimerization. The multiferroic domain walls
will be solitons in that they will show stability and be
localized in space [39]. Their propagation can take place
without changing their shape significantly, making them
potential information carriers. Such solitons will respond
easily to external magnetic and electric fields. In the
simplified model presented so far, these are independent
excitations. However, a glance at the physics of magnon-
phonon coupling [40,41] makes the case very compelling
that they will indeed be coupled in a real material. The
properties of such magnetoelectric solitons should lead to
remarkable examples of fractionalization physics, such as
that seen in the case of polyacetylene [42,43]. These
solitonic domain walls, magnetoelectric in nature, hold
promising technological potential.

FIG. 2. Antiparallel case with staggered external potential.
(a) Wave functions, reflecting the induced spin polarization of
the system. (b) Electron density, for the k ¼ 0 state, over the unit
cell as a function of the staggered potential V. The plot
corresponds to ζ ¼ 1=3. (c) Electronic bands ẼðkÞ, where Ẽ
stands for E=Δ. In the insets, we see the lowest and highest points
of the bands at k ¼ 0 and k ¼ −π=a, as a function of V=Δ. The
last two panels are dedicated to the electric polarization of
the system. (d) P↑=↓, whose exact cancellation is broken by
the presence of V, giving rise to Pe. Up and down triangles
represent reversed values of V. (e) Pe vs V and ζ.
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Discussion and outlook.—In addition to our results with
collinear spins, we have tested our ideas with noncollinear
arrangements. We report on these results that agree with the
basic picture drawn so far in the Supplemental Material
[29,38,42,44–55]. We have presented a simplified, non-
relativistic model of a multiferroic system. Our findings
indicate that the multiferroic behavior of our model arises
from the synergistic interplay between the magnetic and
electric degrees of freedom. Such interplay occurs at a deep
quantum-mechanical level, determined by Berry’s phases
and the quantum theory of polarization. Notably, our
arguments do not rely on spin-orbit coupling. Our results
offer valuable insights into the behavior of multiferroics,
including the geometrical significance of the multiferroic
order parameter. They will be of aid in the design of new
materials with improved multiferroic properties.
The study bears similarities to the spin exchange striction

model [56,57] but operates differently. Here, an antiferro-
magnetic spin order only shows its multiferroic character-
istics when exposed to an external potential, producing
electric and magnetic properties. There are no mechanical
changes, and the parameter ζ remains constant throughout.
We have referred to a low-energy effective tight-binding

Hamiltonian. It can be created by projecting the electronic
states into the δð·Þ’s bound states and specifying the
dynamics by the hopping transitions among them. The
specific form can be written after inspection, arriving at an
antiferromagnetic generalization of the Rice-Mele
Hamiltonian, AFM-RM:

H ¼ −
X
iσ

�
tic

†
i;σciþ1;σ þ t�i c

†
iþ1;σci;σ

�

þ Δ̃
X
iσσ0

ð−1Þiτzσσ0c†i;σci;σ0 þ Ṽ
X
iσ

ð−1Þic†i;σci;σ ; ð4Þ

where ti ¼ t̃þ ð−1Þieδt. In Eq. (4), c†i;σ (ci;σ) stands for a
creation (annihilation) operator of an electron at site i with
spin component σ. All the parameters with tilde can be
easily associated with the original Kronig-Penney model in
Eq. (1). A quantitative link can be established by fitting the
four lowest bands of that model with those of Eq. (4). This
Hamiltonian is easily manageable and easily extended to
other dimensions and symmetries. The AFM-Rice-Mele
Hamiltonian belongs to the Rice-Mele Hamiltonian family
[35,58]. Such a Hamiltonian contains the same low-energy
physics as the starting one, Eq. (1), in much fewer degrees
of freedom. Interestingly, this Hamiltonian can be regarded
as a model for a variety of physical systems ranging from
quantum optics, ultracold quantum gases, phononic meta-
materials, material sciences, etc.
The model studied in this Letter aims to demonstrate

features that result from its symmetries, not to render a direct
application to real systems. Nevertheless, it can accurately
describe a particular family of polymeric, dimerized, one-
dimensional antiferromagnets. Furthermore, by construct-
ing effective metamaterial-based heterostructures, this

model can reveal emergent behaviors characteristic of these
materials. Furthermore, it is possible to create optical
analogs that follow the same dynamics as in our case study.
Thismodel can be applied to low-dimensional van derWaals
magnetic systems, such as the one-dimensional MoI3 [33].
Furthermore, our Letter forecasts the possibility of

creating a system with a gap between the majority-spin
band and the minority-spin band, which would exhibit
quantized magnetization and maximal charge-polarization
densities. This type of topologically quantized multifer-
roicity should result in huge magnetoelectric effects.
The model demonstrates the behavior of domain walls

that carry charge and spin, known as solitons. These
solitons are stable and can be localized in space, moving
without significant shape changes, and reacting to external
magnetic and electric fields. The coupling of magnons and
phonons suggests that these solitons will be connected in
real materials, exhibiting properties such as fractionaliza-
tion physics, as seen in polyacetylene. These magneto-
electric solitons have the potential to be used for
information transport and other applications.
The model’s generalization to higher dimensions is

straightforward and will be a matter of future investigation.
In this sense, although our current manuscript focuses on
the induction of multiferroics with an electric dipolar
moment, we see potential pathways to extend the model
to include higher-order multipole moments, such as the
quadrupole. By dealing with a 2D version of the SSH [59]
and extending it into a 2D AFM-RM model, we can look at
the magneto-quadrupolar states. However, we do not expect
them to be quantized. A spin extension of the models of
[60] could be a path to obtain a quantized magnetoqua-
drupolar and higher topological order.
On the matter of fluctuations, a common occurrence in

many quantum systems, particularly in 1D models, dimer-
ized models, such as our system, are no exception. With
quantum- and thermal-symmetry-restoring fluctuations
present. When studying the fluctuations around the
classical framework tied to the phonon spectrum of the
SSH model, it was observed that the zero point motion
related to the lattice displacement could be almost on the
same scale as the lattice spacing [38]. This realization
prompted a reassessment of the traditional classical
approximation. Additionally, in particularly small systems,
tunneling between equivalent classical configurations can
occur swiftly, potentially leading to a consistent ground-
state symmetry restoration. Thus, it is crucial to examine
whether the broken symmetry of a dimerized system can
endure when exposed to quantum tunneling effects. More
research is needed on this matter with the specifics of our
Hamiltonian.
Quantum tunneling can significantly alter a system,

leading to modification of the dimerization order parameter.
When evaluating experimental data, this adjusted parameter
is vital, especially compared to results from X-ray
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experiments. Additionally, in optical studies, the optical
absorption spectrum will show a peak at the renormalized
gap edge. It is crucial to factor in these quantum adjust-
ments when interpreting experimental outcomes.
Quantum fluctuations could potentially alter these topo-

logical characteristics, affecting associated physical proper-
ties, such as electric polarization. However, as long as the
system extension is restricted to protect the dimerization
order, the topological polarization will be protected.
Recent experiments involving ultracold quantum gases

have made significant progress in achieving integer-
quantized topological charge pumping with optical lattices
[61], thereby inheriting topological notions in the realm of
disordered systems. This has spurred a great deal of
research into the effects of static disorder on topological
Thouless charge pumping, particularly within the half-
filled Rice-Mele model containing random diagonal dis-
order. It was found that the quantization of transported
charge corresponds to the winding of the polarization.
Recent ultracold quantum gas experiments have provided
evidence to support these findings.
The local moments in this Letter are regarded quenched

or frozen. More work is needed if such restrictions were to
be lifted. The dynamics of the local moments will enrich
the landscape painted so far with spin-transfer torques,
magnon-based transport, and spin-pumping effects, in
addition to the spin currents that roam the system.
Including those degrees of freedom, along with phononic
ones, will give rise to various magnetoelectric couplings.
These are not apparent in the ideal theory presented here.
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