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For bosons with flat energy dispersion, condensation can occur in different symmetry sectors. Here, we
consider bosons in a kagome lattice with π-flux hopping, which, in the presence of mean-field interactions,
exhibit degenerate condensates in the Γ and the K point. We analyze the excitation above both condensates
and find strikingly different properties: For the K-point condensate, the Bogoliubov–de Gennes (BdG)
Hamiltonian has broken particle-hole symmetry and exhibits a topologically trivial quasiparticle band
structure. However, band flatness plays a key role in breaking the time-reversal symmetry of the BdG
Hamiltonian for a Γ-point condensate. Consequently, its quasiparticle band structure exhibits nontrivial
topology, characterized by nonzero Chern numbers and by the presence of edge states. Although quantum
fluctuations energetically favor the K-point condensate, the interesting properties of the Γ-point condensate
become relevant for anisotropic hopping. The topological properties of the Γ-point condensate get even
richer in the presence of extended Bose-Hubbard interactions. We find a topological phase transition into a
topological condensate characterized by high Chern number and also comment on the realization and
detection of such excitations.
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Introduction.—The discovery of topological band struc-
tures has led to an entire new field of physics on topological
properties of quantum matter [1,2]. The nontrivial topology
of bulk Bloch bands in topological insulators and super-
conductors possesses gapless edge states which are robust
against local impurities and give rise to responses that are
precisely quantized. A prototypical example of a topologi-
cal insulator is a fermionic two-dimensional integer quan-
tum Hall system [3], which exhibits a quantized Hall
conductivity proportional to the nonzero Chern number
of the occupied bands. The nonzero value of the Chern
number originates from the breaking of time-reversal
symmetry (TRS) due to an applied magnetic field and is
responsible for the existence of unidirectional gapless
chiral modes propagating along the edges of the system;
however, the bulk is completely insulating. In the presence
of interactions, such systems may develop topological
order, with even more striking phenomena such as anyonic
quasiparticles [4], possibly even for mean-field inter-
actions as in the case of Majorana modes in a p-wave
superconductor.
However, the notion of topological protection is not tied

to fermionic systems only, as interactions also open an
avenue for probing topological band structure in bosonic
systems, as observed in beautiful quantum gas experiments
with cold bosonic atoms [5,6]. While in such a case the

nontrivial topology is already present on the level of the
single-particle band structure and interactions are only a
tool to fill the topological band with bosonic particles, there
are other scenarios in which the topologically nontrivial
behavior is induced only by the interactions. In particular,
bosonic condensates with broken TRS can give rise to
collective excitations which exhibit topological bands [7,8].
This exotic phenomenon may happen in degenerate bands
and has recently been observed by preparing a Bose-
Einstein condensate (BEC) within the p band of a honey-
comb lattice [9].
An extreme case of band degeneracy is a flat band where

many single-particle states are dispersionless and localized.
Quantum systems with a flat energy dispersion have
recently attracted a lot of attention, especially due to the
realization of flat bands in magic-angle twisted bilayer
graphene [10], as well as in synthetic systems [11–16].
While electronic flat band systems have attracted a lot of
attention due to unconventional superconductivity in syn-
thetic systems, the important question of bosonic conden-
sation in the presence of vanishing of kinetic energy can be
studied. Lifting of the flatness through mean-field inter-
actions as well as the quantum geometry of Bloch states
have been discussed as mechanisms which, out of many
degenerate states, favor a stable BEC. This turns the mean-
field ansatz into a self-consistent description. Still, the flat
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band scenario comes with some caveats: The huge single-
particle degeneracy of the band may survive on the mean-
field level and may be resolved only by the contribution of
fluctuations through a mechanism known as order by
disorder [17,18]. For instance, a mean-field BEC can select
the Γ point or theK point, as well as an extensive number of
configurations with broken translational symmetry, but the
degeneracy is lifted through quantum and/or thermal
fluctuations. As shown in Ref. [12], in the limit of very
low temperature the K-point condensate is selected,
whereas thermal fluctuations might lead to condensates
with broken translational symmetry.
Optical lattices with kagome geometries [19,20] and

their topological properties [21–24] have come under
scrutiny in recent years. Condensation in the flat band is
possible via artificial gauge fields, making it the energeti-
cally lowest band. Schemes to produce such gauge fields
have been developed for a variety of synthetic quantum
systems [25–32]. In this Letter, we consider the scenario of
a kagome lattice with a synthetic π flux. As shown in Fig. 1,
the lowest band of this system is the flat one. We then see
that, out of this degenerate manifold, the presence of on-site
and nearest-neighbor interactions selects two possible
translationally invariant mean-field condensates, at the Γ
point and at the K point. Then the collective excitations
above these condensates on the level of a quadratic
Bogoliubov–de Gennes (BdG) Hamiltonian are studied.
We summarize the two key findings from our analysis at the
outset: (a) We show that the symmetry properties of the
BdG Hamiltonian depend crucially on the wave vector of
the condensate. Strikingly, although the single-particle
bands are topologically trivial, band flatness and on-site
interactions conspire to render the condensate at the Γ point
nontrivial. This condensate may further undergo a topo-
logical phase transition into bands with higher Chern
number through the presence of nearest-neighbor inter-
actions [33]. (b) While the nontrivial condensate is unstable
with respect to the zero-point fluctuations in the case of a

kagome lattice with isotropic hopping, we explicitly argue
how one can overcome this challenge by engineering
anisotropic hopping terms which can enforce the topologi-
cal condensate [34], with possible scope for experimental
realization with an ultracold artificial kagome lattice. In
Supplemental Material [35], we provide exact numerical
checks via diagonalization and density matrix renormali-
zation group, demonstrating the stability of the BEC.
System.—The kagome structure is composed of three

sublattices A, B, and C (the left panel in Fig. 1), and the
tight-binding Hamiltonian of particles on such a lattice is
H0 ¼ t

P
hi;ji
α;β
d†i;αdj;β − μ

P
i;α d

†
i;αdi;α, where di;α (d†i;α) is

the annihilation (creation) operator for particles on sub-
lattice α located at position i. The amplitude of hopping
between nearest neighbors hi; ji is t > 0, and the π flux is
accounted by the sign of the hopping term. In momentum
space, the Hamiltonian reads

H0ðkÞ ¼

2
64

−μ 2t cos k1 2t cos k2
2t cos k1 −μ 2t cos k3
2t cos k2 2t cos k3 −μ

3
75; ð1Þ

with ki ¼ k · δi where δi is the vector between two
nearest neighbors, as defined in the left panel in Fig. 1.
In the rhomboidal Brillouin zone (right panel in Fig. 1), we
observe a band touching at Γ ¼ ð0; 0Þ between the
flat band and the middle band and between the middle
band and the upper band at the K and K0 points. For the
interactions, we consider repulsive on-site interactions U
and also account for possible nearest-neighbor inter-
actions V in the interaction Hamiltonian given by HI ¼
ðU=2ÞPi;α ðni;αni;α − 1Þ þ ðV=2ÞPhi;ji

α;β
ni;αnj;β, where the

density operator is ni;α ¼ d†i;αdi;α.
In a mean-field treatment, the bosonic operators

are replaced by their expectation values, hdki ¼ d∘k ¼
ðψk;A; eiϕk;Bψk;B; eiϕk;Cψk;CÞ, which are found by minimiz-
ing the energy. We concentrate on translationally invariant
mean-field solutions in which condensation occurs in a
single mode, denoted kcp. We use the hopping parameter t
as a unit of energy, and the chemical potential μ serves to
adjust the condensate density ρ ¼ P

α jΨkcp;αj2, which we
set to 1. The interaction parameters U and V are considered
tunable, and we find that qualitatively two regimes must be
distinguished. (i) U > 2V.—In this physically easily real-
izable scenario, the mean-field energy EMin ¼ −2tρþ
ðU þ 4VÞρ2=3 occurs in two modes, at the Γ and K points.
In both modes, the mean-field solution is uniform in the
sublattices, i.e., jψαj2 ¼ ρ=3. An important difference
between the two degenerate condensates is the complex
phase in the Γ-point condensate, in contrast to the K-point.
Specifically, the two solutions read

FIG. 1. Kagome lattice with three different sublattices in the left
panel and single-particle dispersion relation of the tight-binding
Hamiltonian in Eq. (1) for t > 0 in the right panel. Here, δi
represents the distance between two different nearest-neighbor
sublattices, and bi stands for the reciprocal lattice vectors in
momentum space.
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d∘Γ ¼ 1ffiffiffi
3

p ð1;−eiπ=3; e2iπ=3Þ; d∘K ¼ 1ffiffiffi
3

p ð1; 1;−1Þ: ð2Þ

(ii) U < 2V.—In this case, the energy is minimal only at
the Γ point. As a result of strong nearest-neighbor inter-
action, the condensate is not uniform in the sublattice
anymore. In addition, we mention that at U ¼ 2V the
infinite degeneracy of the flat band, which is typically
removed by the interactions, reappears as a consequence of
the competition between U and V. However, further
investigations in this direction are beyond the scope of
this Letter.
Bogoliubov quasiparticles.—Despite the possibly very

interesting physics which may occur for dominant V, in the
following, we focus on the more physical scenario (i). To
account for quantum fluctuations around the mean field
and obtain the excitations of the mean-field system, we split
the operators into mean-field part and fluctuations,
dk ¼ d∘kcp þ δdk, where δdk ¼ ð1 − δk;kcpÞdk is zero at

the condensation point. To obtain a quadratic BdG
Hamiltonian, HBðkÞ ¼ 1

2

P
α;β Ψ

†
k;αH

MF
α;β Ψk;β þ const, we

keep fluctuating terms only to second order and define
Nambu spinors Ψk ¼ ðΨkþ ;Ψ

†
k−
ÞT , in which the two

components represent particlelike and holelike parts of
the wave function, with Ψk� ¼ ðδdk�;A; δdk�;B; δdk�;CÞT
and k� ¼ kcp � k. The kernel of the BdG Hamiltonian
reads

HB ¼
�H0ðkcp þ kÞ þH0ðkÞ HΔðkÞ

H�
ΔðkÞ HT

0 ðkcp − kÞ þH�
0ðkÞ

�
;

ð3Þ

where the diagonal part contains the tight-binding
Hamiltonian H0ðkÞ from Eq. (1) and a mean-field con-
tribution H0ðkÞ from the interactions. The off-diagonal
terms HΔ stem exclusively from the mean-field decom-
position of interactions; see Supplemental Material [35] for
explicit expressions.
Diagonalization of the BdG Hamiltonian needs to

account for the commutation relation of the Nambu spinors
[42], ½Ψk;Ψ

†
k0 � ¼ σ3δk;k0 , where σ3 ¼ σz ⊗ I3 acts on

Nambu space as the Pauli matrix σz. The eigenmodes of
the BdG Hamiltonian are obtained from the pseudo-
Hermitian Hamiltonian σ3HBðkÞ, and the transformation
matrix WðkÞ which diagonalizes σ3HBðkÞ satisfies the
following relations:

W†ðkÞσ3WðkÞ ¼ σ3; ð4Þ

W†ðkÞHMFðkÞWðkÞ ¼ diag½ωðkþÞ;ωðk−Þ�; ð5Þ

W−1σ3HMFðkÞWðkÞ ¼ σ3diag½ωðkþÞ;…;ωðk−Þ�: ð6Þ

Here, ωðkÞ ¼ ½ω1ðkÞ;ω2ðkÞ;ω3ðkÞ�T represents lowest to
highest eigenenergies at momentum k, respectively, for the
Bogoliubov quasiparticles (kþ) and quasiholes (k−). The
lowest-energy band ω1 should have zero energy at the
condensation point which fixes the chemical potential
μ [14,43].
In the BdG Hamiltonian, particle-hole symmetry (PHS)

and TRS are defined as TRS: H�
BðkÞ ¼ HBð−kÞ and PHS:

σ1H�
BðkÞσ1 ¼ HBð−kÞ [44,45]. We find that the symmetry

properties of the BdG Hamiltonian depend on the choice of
mean-field momentum: For kcp ¼ Γ, the complex-valued
condensation parameters break TRS, while the diagonal
blocks in the Bogoliubov Hamiltonian are the same; i.e.,
PHS is preserved. For kcp ¼ K, real-valued condensation
parameters keep TRS intact, but the finite momentum of the
condensate breaks PHS.
These symmetry properties have important conse-

quences for the excitations whose spectra are plotted in
Fig. 2 for the two different kcp. For kcp ¼ Γ, PHS makes
particle and hole spectra indistinguishable. They are plotted
in Figs. 2(a) and 2(b) for two different values of V. For
kcp ¼ K, particle and hole spectra are different, and plotted
separately in Figs. 2(c) and 2(d), for the same choice of V as
used in Fig. 2(a). The effect of TRS breaking is seen in
Fig. 2(a) by the gap openings between all the bands in
whole Brillouin zone, absent in Figs. 2(b)–2(d).
Broken TRS is also expected to have consequences for

the topological properties of the collective modes;
cf. Refs. [13,46–50]. Band curvature and Chern numbers
are defined, respectively, as

BmðkÞ ¼ i
X
i:j

ϵijh∂iWðkÞjσ3j∂jWðkÞimmðσ3Þmm; ð7Þ

FIG. 2. Bogoliubov dispersions of quasiparticle and quasiholes,
for different values of nearest-neighbor interaction V and fixed
on-site interaction U=t ¼ 3. The value of nearest-neighbor
interaction is V=t ¼ 0.5 in panels (a)–(d) and V=t ¼ 4 in panel
(b). In panels (a) and (b), condensation occurs at kcp ¼ Γ. In this
case, particle-hole symmetry leads to ωðkþÞ ¼ ωðk−Þ. In panels
(c) and (d), condensation occurs at kcp ¼ K. In this case, particle-
hole symmetry is broken, and we depict the dispersion of
quasiparticles and quasiholes separately. In all panels, we have
chosen t ¼ ρ ¼ 1.
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Cm ¼ −
1

2π

Z
BZ

d2kBmðkÞ: ð8Þ

Here, m stands for the Bogoliubov mode band index. We
use the Fukui-Hatsugai-Suzuki method [51] to evaluate the
Chern number for Bogoliubov excitation bands, making
use of Eq. (8). Interestingly, as shown in Fig. 3, the
condensate in Γ is not only topologically nontrivial, but
also changes its topology upon tuning V. At very small V,
the central band is topologically trivial, while bands 1 and 3
have Chern numbers −1 and 1. At V=t ≈ 0.11, the gap Δ23

between the second and third bands touches zero, and then
beyond this value for any V=t≳ 0.11 all bands become
topologically nontrivial: Bands 1 and 3 both acquire Chern
number −1, whereas the central band exhibits a higher
Chern number of value 2. This topology persists up to
V ¼ U=2, where the gap closing Δ12 between bands 1 and
2 yields another topological phase transition. However, as
mentioned earlier, at this value also a structural change of
the mean-field occurs.
Bulk-boundary correspondence.—The nontrivial topol-

ogy of the Bogoliubov bands manifests itself also through
chiral edge states. To study them, we apply a slab structure
bounded along the y axis and composed of A, B sublattices
at the two ends. We exploit translational invariance along
the x axis and considerNy ¼ 62 sites along y. Details of the
calculation for the bounded slab structure are provided in
Supplemental Material [35]. Our main results are shown in
Fig. 4, for V ¼ 0 in the panels on the left and for V=t ¼ 0.6
in the panels on the right. Within the gaps of the bulk
Hamiltonian [plotted in Figs. 4(a) and 4(b)], the slab
structure exhibits one in-gap mode [see spectra shown in
Figs. 4(c) and 4(d)], which by their wave functions [plotted
in Supplemental Material [35], panels (c) and (d)] as well as

by the condensate profile in the slab geometry [plotted in
Supplemental Material [35], panels (a) and (b)] can be
identified as localized edge states. The pair of blue and red
states, at opposite edges and with opposite group veloc-
ities, can be interpreted as one chiral edge mode. In the
figure, we have restricted our illustration to the edge states
in the larger gaps, which exhibit sharper localization
properties, but we note that both gaps in Fig. 4(c) exhibit
an edge mode with the same chirality. This agrees with the
trivial Chern number of the central band at V ¼ 0, which
from the bulk-boundary correspondence is not expected to
produce any change in the edge states. On the other hand,
in Fig. 4(d), the chirality of the mode in the second gap is
opposite to the chirality of the mode in the first gap. The
chirality change is expected due to the Chern number of
the central band now being 2. Thus, the topology of the
Bogoliubov quasiparticles is reflected by the chirality
of the edge state, as expected from the bulk-boundary
correspondence principle [13,52,53].
Discussion.—We have shown that nontrivial topological

Bogoliubov excitation modes occur from the Γ-point
condensate due to broken TRS in the corresponding
BdG Hamiltonian but not from the K-point condensate.
This is rather curious, since condensation in the Γ point is
quite usual. Hence, the question arises whether the flatness
of the band is required. We address this question by moving

FIG. 3. The Chern number of Bogoliubov mode bands in
addition to the energy gap between different bands for different
values of the nearest-neighbor interaction V is plotted. The
energy gap between the lowest (highest) and middle energy
band, i.e., Δ12 ¼ jω1 − ω2j (Δ23 ¼ jω2 − ω3j), is shown by a red
circle (blue up triangle) line marker. The corresponding Chern
numbers from lowest to highest energy band are specified as C1,
C2, and C3 with green diamond, pink square, and cyan down
triangle line markers, respectively. Here, we supposed U=t ¼ 3
and ρ ¼ 1.

FIG. 4. Bulk dispersion relation of Bogoliubov quasiparticles
above the Γ condensate, in panels (a) and (b). Dispersion relation
of Bogoliubov quasiparticles above the Γ condensate, obtained
from the bulk Hamiltonian in panels (a) and (b) and for the slab
Hamiltonian in panels (c) and (d). The panels on the left (a),(c)
are for V ¼ 0 and on the right are for V=t ¼ 0.6, while in all
panels U=t ¼ 3 is assumed. In the bulk Hamiltonian, all bands in
different colors are energetically separated from each other, and
Chern numbers are well defined (given in the boxes), although
between the first and second bands in (b) the indirect band gap
becomes zero. Noting the opposite group velocities of red and
blue edge states, seen from the dispersion in (c) or (d), we
interpret the pair as one chiral mode. Note that the chirality of the
mode analyzed in the left panel is opposite to the chirality of the
mode analyzed in the right panel. The chirality change is due to
the topological transition at finite V, rendering the Chern number
of the central band to 2 in the right panels.
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the flat band from the lowest to the highest energy band by
means of substituting t → −t in Eq. (1). The lowest-energy
band then has a minimum energy at Γ. For U ≥ V, we find
uniform condensation [d∘Γ ¼ ð1; 1; 1Þ= ffiffiffi

3
p

], whereas non-
uniform condensation appears for V > U. Independent of
the interaction parameters, both PHS and TRS are pre-
served in the BdG Hamiltonian, and the Bogoliubov
excitations are topologically trivial. We conclude that the
flatness of the lowest band is crucial to obtain the
topological condensate.
However, as already found in Ref. [12], in the case of a flat

lowest band, quantum fluctuations favor condensation in the
K point which lacks the interesting topological behavior.
How then can we have a system with a stable topologically
nontrivial Γ-point condensate? Fortunately, there is a
relatively simple mechanism which can act in favor of the
Γ-point condensate: It has been shown in Ref. [34] that
anisotropic hopping parameters in the kagome lattice
can give rise to a substantially flat band with a controllable
gap closing in the noninteracting Hamiltonian. Through
this procedure, the number of condensation points can be
reduced to one, at different high-symmetry points (Γ,K,M),
depending on the choice of parameters. This then allows
us to obtain a Γ-point condensate from the lowest flat
bandwhich is robust against quantum fluctuations andwhich
has the same topologically nontrivial behavior reported
above; see Supplemental Material [35]. Moreover, the
construction allows us to remove the band-touching point
and separate the flat band from the other bands on the single-
particle level.
Experimental possibilities.—Our proposal here is exper-

imentally feasible to realize with ultracold bosonic dyspro-
sium atoms (or Rydberg atoms) in an optical lattice. The
contact interaction for such an atomic species is already
present. Importantly, they also possess a large magnetic
dipole moment of ∼10 μB which makes such atoms
interact through dipole-dipole repulsion. So, tailoring a
noninteracting lattice with shorter periodicity is necessary
to have a generous value of nearest-neighbor interactions.
In fact, tuning into different topological phases of the
excitations becomes possible upon varying the lattice
periodicity (or the Rydberg blockade radius) in such a
system. The underlying noninteracting lattice itself can be
generated by overlaying two commensurate triangular
optical lattices with different wavelengths, as realized in
Ref. [54]. The last ingredient necessary is a positive value
of tunneling which can originate from a synthetic gauge
flux as can be realized via circular lattice shaking [55]. The
measurements of the topological edge states of the exotic
excitation spectrum can then be carried out using two-
photon-stimulated Raman transitions [56,57] which can
load a macroscopic number of bosons from the condensate
directly into the topological edge states. A time-of-flight
measurement would then confirm the presence of vortices
corresponding to the chiral topological modes.
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