
Absence of Spontaneous Magnetic Fields due to Time-Reversal Symmetry
Breaking in Bulk Superconducting UTe2

N. Azari ,1 M. Yakovlev,1 N. Rye ,1 S. R. Dunsiger,1,2 S. Sundar ,3 M.M. Bordelon,4

S. M. Thomas ,4 J. D. Thompson,4 P. F. S. Rosa,4 and J. E. Sonier 1

1Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
2Centre for Molecular and Materials Science, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada

3Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St. Andrews,
St. Andrews KY16 9SS, United Kingdom

4Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Received 18 August 2023; accepted 18 October 2023; published 29 November 2023)

We have investigated the low-temperature local magnetic properties in the bulk of molten salt-flux
(MSF)-grown single crystals of the candidate odd-parity superconductor UTe2 by zero-field muon spin
relaxation (μSR). In contrast to previous μSR studies of UTe2 single crystals grown by a chemical vapor
transport method, we find no evidence of magnetic clusters or electronic moments fluctuating slow enough
to cause a discernible relaxation of the zero-field μSR asymmetry spectrum. Consequently, our
measurements on MSF-grown single crystals rule out the generation of spontaneous magnetic fields in
the bulk that would occur near impurities or lattice defects if the superconducting state of UTe2 breaks
time-reversal symmetry. This result suggests that UTe2 is characterized by a single-component super-
conducting order parameter.
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A superconducting phase results from the condensation of
electron (Cooper) pairs into a coherent quantum state
characterized by a pair wave function or complex order
parameter consisting of an amplitude and a phase. All
superconductors break gauge symmetry, which means their
order parameter adopts a well-defined phase below the
superconducting transition temperature (Tc). Conventional
superconductors have a spin-singlet pairing state with an
isotropic spatial component (s-wave) mediated by electron-
phonon coupling. By contrast, unconventional super-
conductors deviate from this pairing state and may be
characterized by more elaborate superconducting order
parameters due to the breaking of additional symmetries [1].
Recently discoveredUTe2 is believed to be a rare example

of an unconventional odd-parity superconductor based on an
abnormally large upper critical magnetic field (Hc2) [2,3], as
well as the small change in the nuclear-magnetic resonance
(NMR) Knight shift as a function of temperature in the
superconducting state [4–6]. The observation of a nonzero
polar Kerr effect (PKE) in the superconducting state of
chemical vapor transport (CVT)-grownUTe2 single crystals
that exhibit two phase transitions in the specific heat has
been taken as evidence of a time-reversal symmetry (TRS)-
breaking order parameter [7,8]. Broken TRS is a defining
property of chiral superconductivity [9], and, hence, the
appearance of the PKE below Tc lends support to other
signatures of chiral superconductivity detected by scanning
tunneling microscopy (STM) [10] and magnetic penetration
depth [11,12] measurements of UTe2. Chiral odd-parity

superconductivity is of much current interest, because
certain topological nontrivial Cooper pairing states can host
Majorana zero modes with potential applications for topo-
logical quantum computing [9,13].
The superconducting order parameter at a second-order

phase transition is restricted to an irreducible representation
of the total symmetry group [1]. The possible super-
conducting phases in UTe2 are, therefore, classified by
the crystalline point group symmetry D2h. Order para-
meters that transform under the one-dimensional irreduc-
ible representations (1D irreps) of this group do not break
TRS. Consequently, to explain the signature of spontaneous
TRS breaking in the polar Kerr measurements and the
chiral surface states detected by STM, an odd-parity super-
conducting order parameter having two nearly degenerate
components with a relative phase belonging to different
1D irreps of the D2h crystalline point group has been
proposed [7,10]. However, this characterization of the
superconducting order parameter for UTe2 presents a
number of challenges. The PKE was observed in a sample
showing two phase transitions in the specific heat at
ambient pressure, as expected if the two components of
the order parameter are nearly degenerate. However, as the
quality of the samples improved, only a single super-
conducting transition was observed [14,15]. A recent study
of the PKE in CVT-grown and MSF-grown UTe2 single
crystals that exhibit a single superconducting phase tran-
sition in the specific heat found no evidence for TRS
breaking superconductivity [16]. Furthermore, pulse-echo
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ultrasound measurements of the changes in elastic moduli
across Tc in single and double phase transition CVT-grown
samples [17] and recent NMR Knight shift measurements
on MSF-grown UTe2 single crystals [6] both favor a single-
component odd-parity superconducting order parameter.
Zero-field muon spin relaxation (ZF-μSR) is an ideal tool

for independently determining whether TRS symmetry is
spontaneously broken in a superconducting state. In the
bulk of a TRS-breaking superconductor, inhomogeneities
of the order parameter that occur near impurities, lattice
defects, or around domain walls generate spontaneous
currents [18]. The corresponding weak spontaneous local
magnetic fields have been detected by ZF-μSR in numerous
unconventional superconductors—most notably UPt3 [19]
and Sr2RuO4 [20], two compounds in which TRS breaking
has been confirmed by polar Kerr measurements [21,22].
Both superconductors have been considered as likely chiral
superconductors, although Sr2RuO4 is no longer believed
to be a candidate for odd-parity superconductivity [23].
As for UTe2, the relaxation rate of the ZF-μSR signal

from CVT-grown single crystals exhibiting single or double
transitions in the specific heat was found to be dominated
by inhomogeneous freezing of magnetic clusters [24,25],
which thwarted sensitivity to the potential onset of weak
spontaneous fields at Tc. As discussed in Ref. [25], the
magnetic clusters are likely responsible for the residual
linear term in the temperature dependence of the specific
heat (C) below Tc and the low-temperature upturn in C=T
versus T that are ubiquitous in UTe2 samples grown via the
CVT method. Moreover, a saturation in the growth of the
total volume of the magnetic clusters and an abrupt slowing
down of their fluctuation rate was observed near Tc. By
contrast, current UTe2 single crystals grown by the MSF
method have less disorder and, correspondingly, a much
larger residual resistivity ratio (RRR) as well as a sub-
stantially smaller residual T-linear term in the specific heat
compared to CVT-grown single crystals [15]. A potential
origin of the magnetic clusters is discussed later, but they
are presumably induced by defects that disrupt long-range
electronic correlations, as suggested in Ref. [26]. Hence,
while MSF-grown UTe2 single crystals may contain trace
amounts of the ferromagnetic (FM) impurities U7Te12 and
U3Te5 [15], magnetic clusters are expected to be sparse.
Here, we present results of a ZF-μSR study of

MSF-grown UTe2 single crystals. The single crystals all
come from the same growth batch and exhibit bulk super-
conductivity below Tc ¼ 2.01 K, as determined from the
midpoint of the specific heat jump shown in Fig. 1(a). The
crystals have an RRR value of 200, and the coefficient of
the residual T-linear term in the specific heat below Tc is
approximately 9 mJ=mol · K2. Figure 1(b) shows a com-
parison of the temperature dependence of the bulk magnetic
susceptibility (χ) for a magnetic field of 1 kOe applied
along the three principal crystallographic axes. In contrast
to the low-field behavior of χðTÞ along the a axis in

CVT-grown UTe2 single crystals [2,14], χaðTÞ does not
exhibit an upturn below T ∼ 10 K.
For the ZF-μSR measurements, a mosaic of 24 single

crystals was mounted on a 5 × 17 mm pure silver (Ag)
backing plate thermally anchored to the Ag sample holder
of an Oxford Instruments top-loading dilution refrigerator
at the end of the M15 surface muon beam line at TRIUMF,
Vancouver, Canada. The MSF-grown UTe2 single crystals
covered 83% of the Ag backing plate. The c axis of each
single crystal was aligned within 2° of the normal of the Ag
backing plate. For the zero-field measurements, stray
external magnetic fields at the sample position were
reduced to ≲41 mG using field compensation coils and
the precession signal of muonium (Mu≡ μþe−) in intrinsic
Si as a sensitive magnetometer [27]. The ZF-μSR mea-
surements were performed by implanting nearly 100%
spin-polarized positive muons (μþ) into the sample with the
initial muon spin polarization Pð0Þ antiparallel to the muon
beam direction (defined as the z-axis direction) and parallel

FIG. 1. (a) Temperature dependence of the specific heat (C) for
one of the MSF-grown UTe2 single crystals, plotted as C=T
versus T. The dashed curve is a fit of the data below T ¼ 1 K to
C=T ¼ γ� þ βT2, which yields γ� ¼ 9.1ð6Þ mJ=mol K2 and
β ¼ 83ð1Þ mJ=mol K3. (b) Temperature dependence of the bulk
magnetic susceptibility of the single crystal for a magnetic field
H ¼ 1 kOe applied parallel to the three different principal
crystallographic axes. The inset shows the same data as a
semilogarithmic plot.
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to the crystalline c axis. The time evolution of the muon
spin polarization PzðtÞ was determined by detecting the
muon decay positrons in a pair of opposing detectors
positioned outside of the dilution refrigerator in front and
behind the sample.
The ZF-μSR asymmetry spectra are well described by

the following equation:

AðtÞ ¼ a0PzðtÞ
¼ a1GGKT

z ðΔ; tÞe−λ1t þ a2e−λ2t; ð1Þ

whereGGKT
z ðΔ; tÞ is a static Gaussian Kubo-Toyabe (GKT)

function, characterized by the linewidth Δ=γμ (γμ=2π is the
muon gyromagnetic ratio) of a Gaussian distribution of
local magnetic fields [28]. Figure 2 shows a comparison of
ZF-μSR asymmetry spectra for T ¼ 4 K recorded for
measurements of the Ag backing plate with and without
the MSF-grown UTe2 single crystals. The observed relax-
ation of the ZF-μSR signal with time for the Ag plate
without the sample is due to muons landing in material
elsewhere within the dilution refrigerator. This contribution
is described by the first term in Eq. (1), which makes up

∼16% of the total ZF-μSR signal (a1=a0 ∼ 16%). The
remaining 84% of the ZF-μSR asymmetry spectrum is due
to muons stopping in the Ag plate (∼64%) and a portion of
the Ag sample holder (∼20%). This component of the
ZF-μSR signal is essentially nonrelaxing (λ2 ∼ 0), as Ag
does not possess electronic moments and has only very
small nuclear moments that do not cause an appreciable
muon spin depolarization in the data time window. The
relaxation of the ZF-μSR signal by randomly oriented
nuclear moments is also negligible in UTe2, because the
only stable uranium isotope with nonzero nuclear spin is
depleted 235U, which has a natural abundance of 0.20%, and
the natural abundance of the tellurium isotopes with nuclear
spin, 123Te and 125Te, is only 0.89% and 7%, respectively.
No discernible difference is observed between the ZF-μSR
spectra for the Ag plate and the UTe2 single crystals
mounted on the Ag plate, indicating that there are no
electronic moments fluctuating in the UTe2 sample at this
temperature that are slow enough to cause additional
relaxation of the ZF-μSR signal. With the sample in place,
the nonrelaxing component is due to muons stopping in the
UTe2 single crystals, in the Ag backing plate, and in a
portion of the Ag sample holder. These contributions are
separable in a transverse-field (TF) μSR measurement, due
to a sizable muon Knight shift in UTe2 [29]. The con-
tribution of the UTe2 sample to the nonrelaxing part of the
asymmetry spectrum is estimated to be at least 63% (or
53% of the total ZF-μSR signal) from TF-μSR measure-
ments for an applied magnetic field of 20 kOe.
The ZF-μSR asymmetry spectrum for the UTe2 sample

was recorded for 19 different temperatures between
T ¼ 0.03 K and T ¼ 4.0 K. A global fit of the correspond-
ing 19 different ZF-μSR spectra to Eq. (1) was carried
out with the fit parameters a1, a2, λ1, and Δ being shared
parameters for all temperatures. The global fit yielded
the values a1=a0 ¼ 16.1ð7Þ%, a2=a0 ¼ 83.9ð7Þ%, λ1 ¼
0.158ð7Þ μs−1, and Δ ¼ 0.280ð7Þ μs−1. Representative fits
to ZF-μSR asymmetry spectra included in the global fit are
shown in Fig. 3(a), and the temperature dependence of the
exponential relaxation rate λ2 generated from the global fit is
shown in Fig. 3(b). There is no systematic increase in λ2
with decreasing temperature, in marked contrast to previous
observations for CVT-grown single crystals [24,25]. Hence,
there are no electronic moments fluctuating slow enough to
cause a detectable relaxation of the ZF-μSR spectrum.More
importantly, there is no increase in λ2 near Tc and, hence, no
evidence of spontaneous magnetic fields in the bulk asso-
ciated with a TRS-broken superconducting state.
Extremely slow intra-U-ladder FM fluctuations along

the a axis have been inferred from NMR experiments on
CVT-grown single crystals [26,30,31] that are far below the
rate of spin fluctuations probed in inelastic neutron scatter-
ing studies [32,33]. The low-energy FM spin fluctuations
may be a consequence of vacancies in the U-ladder
structure associated with a small U deficiency in some

FIG. 2. (a) Comparison of the ZF-μSR asymmetry spectra for
the Ag backing plate with (open circles) and without (open
squares) the MSF-grown UTe2 single crystals. The solid curve is
a fit of the ZF-μSR spectrum for the Ag plate to Eq. (1). (b) The
same as (a) but showing an enlargement on the vertical axis.
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CVT-grown UTe2 samples [15]. In particular, spins next to
U vacancies may couple more strongly to the remaining
neighboring spins [34], creating slowly fluctuating mag-
netic clusters that are detectable on the timescales of the
NMR and μSR measurements. However, it is clear from the
current findings that the FM-like fluctuations observed in
our initial ZF-μSR study of CVT-grown single crystals [24]
are not detectable in the absence of significant disorder.
Consequently, it is an open question as to whether FM
fluctuations are an intrinsic property of UTe2.
In summary, the main result of our ZF-μSR study of

MSF-grown single crystals is the absence of spontaneous
local magnetic fields in the bulk, which are expected
for a superconducting state that breaks TRS. This is in
agreement with recent polar Kerr [16], ultrasound [17],
and NMR [6] measurements that do not support a two-
component superconducting order parameter.
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